BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sylvestre M, Crane CA, Pun SH. Progress on Modulating Tumor-Associated Macrophages with Biomaterials. Adv Mater 2020;32:e1902007. [PMID: 31559665 DOI: 10.1002/adma.201902007] [Cited by in Crossref: 70] [Cited by in F6Publishing: 70] [Article Influence: 23.3] [Reference Citation Analysis]
Number Citing Articles
1 Cao Y, Qiao B, Chen Q, Xie Z, Dou X, Xu L, Ran H, Zhang L, Wang Z. Tumor microenvironment remodeling via targeted depletion of M2-like tumor-associated macrophages for cancer immunotherapy. Acta Biomater 2023;160:239-51. [PMID: 36774974 DOI: 10.1016/j.actbio.2023.02.006] [Reference Citation Analysis]
2 Liu Y, Jing W, Zhang J, Chen C, Gao L, Shi C, Li A, Sun P, Zhang R, Yang Z, Tang C, Du W, Dong Y, Xu J, Zhao K, Jiang X. In situ MUC1-specific CAR engineering of tumor-supportive macrophages stimulates tumoricidal immunity against pancreatic adenocarcinoma. Nano Today 2023;49:101805. [DOI: 10.1016/j.nantod.2023.101805] [Reference Citation Analysis]
3 Kausar A. Carbohydrate polymer derived nanocomposites: design, features and potential for biomedical applications. Polymer-Plastics Technology and Materials 2023;62:582-603. [DOI: 10.1080/25740881.2022.2121221] [Reference Citation Analysis]
4 Shin S, Lee P, Han J, Kim SN, Lim J, Park DH, Paik T, Min J, Park CG, Park W. Nanoparticle-Based Chimeric Antigen Receptor Therapy for Cancer Immunotherapy. Tissue Eng Regen Med 2023;:1-17. [PMID: 36867402 DOI: 10.1007/s13770-022-00515-8] [Reference Citation Analysis]
5 Liu Q, Huang W, Liang W, Ye Q. Current Strategies for Modulating Tumor-Associated Macrophages with Biomaterials in Hepatocellular Carcinoma. Molecules 2023;28. [PMID: 36903458 DOI: 10.3390/molecules28052211] [Reference Citation Analysis]
6 Lai WF, Zhang D, Wong WT. Design of erythrocyte-derived carriers for bioimaging applications. Trends Biotechnol 2023;41:228-41. [PMID: 36031485 DOI: 10.1016/j.tibtech.2022.07.010] [Reference Citation Analysis]
7 He Z, Xiang W, Fan Q, Wang L, Chao J. A DNA origami nanostructure embedded with NQO1-activated prodrugs for precision drug delivery. Chem Commun (Camb) 2023;59:912-5. [PMID: 36594872 DOI: 10.1039/d2cc06367k] [Reference Citation Analysis]
8 Lu J, Gao X, Wang S, He Y, Ma X, Zhang T, Liu X. Advanced strategies to evade the mononuclear phagocyte system clearance of nanomaterials. Exploration 2023. [DOI: 10.1002/exp.20220045] [Reference Citation Analysis]
9 Wei W, Zhang Y, Lin Z, Wu X, Fan W, Chen J. Advances, challenge and prospects in cell-mediated nanodrug delivery for cancer therapy: a review. J Drug Target 2023;31:1-13. [PMID: 35857432 DOI: 10.1080/1061186X.2022.2104299] [Reference Citation Analysis]
10 Feng Y, Liao Z, Zhang H, Xie X, You F, Liao X, Wu C, Zhang W, Yang H, Liu Y. Emerging nanomedicines strategies focused on tumor microenvironment against cancer recurrence and metastasis. Chemical Engineering Journal 2023;452:139506. [DOI: 10.1016/j.cej.2022.139506] [Reference Citation Analysis]
11 Gao Y, Su Z, Wang C, Xu J, Hu S, Zhang C, Sun P, Zhou X, Wang W, Zou T, Yang B, Cheng X, Yi X, Zheng Q. Light-Triggered Polymeric Prodrug and Nano-assembly for Chemo-Photodynamic Therapy and Potentiate Immune Checkpoint Blockade Immunotherapy for Hepatocellular Carcinoma. Materials & Design 2022. [DOI: 10.1016/j.matdes.2022.111457] [Reference Citation Analysis]
12 Wei X, Wang J, Liang M, Song M. Development of functional nanomedicines for tumor associated macrophages-focused cancer immunotherapy. Theranostics 2022;12:7821-52. [PMID: 36451865 DOI: 10.7150/thno.78572] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Wang Z, Zhong H, Liang X, Ni S. Targeting tumor-associated macrophages for the immunotherapy of glioblastoma: Navigating the clinical and translational landscape. Front Immunol 2022;13:1024921. [DOI: 10.3389/fimmu.2022.1024921] [Reference Citation Analysis]
14 Pierrevelcin M, Flacher V, Mueller CG, Vauchelles R, Guerin E, Lhermitte B, Pencreach E, Reisch A, Muller Q, Doumard L, Boufenghour W, Klymchenko AS, Foppolo S, Nazon C, Weingertner N, Martin S, Briandet C, Laithier V, Di Marco A, Bund L, Obrecht A, Villa P, Dontenwill M, Entz-Werlé N. Engineering Novel 3D Models to Recreate High-Grade Osteosarcoma and its Immune and Extracellular Matrix Microenvironment. Adv Healthc Mater 2022;11:e2200195. [PMID: 36057996 DOI: 10.1002/adhm.202200195] [Reference Citation Analysis]
15 Yang Y, Hou J, Liu J, Bhushan S, Wu G. The origins of resident macrophages in mammary gland influence the tumorigenesis of breast cancer. International Immunopharmacology 2022;110:109047. [DOI: 10.1016/j.intimp.2022.109047] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Feng Y, Ye Z, Song F, He Y, Liu J, Muddassir Ali M. The Role of TAMs in Tumor Microenvironment and New Research Progress. Stem Cells International 2022;2022:1-11. [DOI: 10.1155/2022/5775696] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Park K, Ahn JW, Kim JH, Kim JW. Tumor-associated macrophage-targeted photodynamic cancer therapy using a dextran sulfate-based nano-photosensitizer. Int J Biol Macromol 2022;218:384-93. [PMID: 35902009 DOI: 10.1016/j.ijbiomac.2022.07.159] [Reference Citation Analysis]
18 Jiang W, Lu K, Gao M, Wang Z, Gu Y, Ma Y. Transformable DNA octahedron for remodeling tumor immune microenvironment with alleviated toxicity. Chemical Engineering Journal 2022;440:135813. [DOI: 10.1016/j.cej.2022.135813] [Reference Citation Analysis]
19 Gao J, Liang Y, Wang L. Shaping Polarization Of Tumor-Associated Macrophages In Cancer Immunotherapy. Front Immunol 2022;13:888713. [DOI: 10.3389/fimmu.2022.888713] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
20 Zeng W, Yu M, Chen T, Liu Y, Yi Y, Huang C, Tang J, Li H, Ou M, Wang T, Wu M, Mei L. Polypyrrole Nanoenzymes as Tumor Microenvironment Modulators to Reprogram Macrophage and Potentiate Immunotherapy. Adv Sci (Weinh) 2022;:e2201703. [PMID: 35678111 DOI: 10.1002/advs.202201703] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
21 Wang D, Chen H, Lei L, Chen J, Gao J, Liu J, Li Q, Xie Y, Hu Y, Ni Y. Biofabricated macrophage and fibroblast membranes synergistically promote skin wound healing. Bioengineering & Transla Med. [DOI: 10.1002/btm2.10344] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Ruan S, Huang Y, He M, Gao H. Advanced Biomaterials for Cell-Specific Modulation and Restore of Cancer Immunotherapy. Adv Sci (Weinh) 2022;9:e2200027. [PMID: 35343112 DOI: 10.1002/advs.202200027] [Reference Citation Analysis]
23 Hou L, Gong X, Yang J, Zhang H, Yang W, Chen X. Hybrid-Membrane-Decorated Prussian Blue for Effective Cancer Immunotherapy via Tumor-Associated Macrophages Polarization and Hypoxia Relief. Adv Mater 2022;34:e2200389. [PMID: 35103352 DOI: 10.1002/adma.202200389] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
24 Liu L, Li H, Wang J, Zhang J, Liang XJ, Guo W, Gu Z. Leveraging macrophages for cancer theranostics. Adv Drug Deliv Rev 2022;183:114136. [PMID: 35143894 DOI: 10.1016/j.addr.2022.114136] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Li X, Pan J, Li Y, Xu F, Hou J, Yang G, Zhou S. Development of a Localized Drug Delivery System with a Step-by-Step Cell Internalization Capacity for Cancer Immunotherapy. ACS Nano 2022. [PMID: 35324153 DOI: 10.1021/acsnano.1c10892] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
26 Shi J, Huang MW, Lu ZD, Du XJ, Shen S, Xu CF, Wang J. Delivery of mRNA for regulating functions of immune cells. J Control Release 2022:S0168-3659(22)00159-6. [PMID: 35337940 DOI: 10.1016/j.jconrel.2022.03.033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
27 Hu W, Gu Z, Zhao L, Zhang Y, Yu C. Vertical Orientation Probability Matters for Enhancing Nanoparticle-Macrophage Interaction and Efficient Phagocytosis. Small Methods 2022;:e2101601. [PMID: 35257508 DOI: 10.1002/smtd.202101601] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Liu Y, Geng Y, Yue B, Lo PC, Huang J, Jin H. Injectable Hydrogel as a Unique Platform for Antitumor Therapy Targeting Immunosuppressive Tumor Microenvironment. Front Immunol 2021;12:832942. [PMID: 35111169 DOI: 10.3389/fimmu.2021.832942] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
29 Zhao X, Guo K, Zhang K, Duan S, Chen M, Zhao N, Xu FJ. Orchestrated Yolk-Shell Nanohybrids Regulate Macrophage Polarization and Dendritic Cell Maturation for Oncotherapy with Augmented Antitumor Immunity. Adv Mater 2022;34:e2108263. [PMID: 35018679 DOI: 10.1002/adma.202108263] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
30 Zheng Y, Han Y, Sun Q, Li Z. Harnessing anti‐tumor and tumor‐tropism functions of macrophages via nanotechnology for tumor immunotherapy. Exploration. [DOI: 10.1002/exp.20210166] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 14.0] [Reference Citation Analysis]
31 Du B, Jiao Q, Bai Y, Yu M, Pang M, Zhao M, Ma H, Yao H. Glutamine Metabolism-Regulated Nanoparticles to Enhance Chemoimmunotherapy by Increasing Antigen Presentation Efficiency. ACS Appl Mater Interfaces 2022;14:8753-65. [PMID: 35138815 DOI: 10.1021/acsami.1c21417] [Reference Citation Analysis]
32 Kumari N, Choi SH. Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res 2022;41. [DOI: 10.1186/s13046-022-02272-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
33 Wei Y, Wu S, Liu Z, Niu J, Zhou Y, Ren J, Qu X. Tumor associated macrophages reprogramed by targeted bifunctional bioorthogonal nanozymes for enhanced tumor immunotherapy. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.01.024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
34 Guo R, Wang S, Zhao L, Zong Q, Li T, Ling G, Zhang P. Engineered nanomaterials for synergistic photo-immunotherapy. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121425] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
35 Song Y, Huang Y, Zhou F, Ding J, Zhou W. Macrophage-targeted nanomedicine for chronic diseases immunotherapy. Chinese Chemical Letters 2022;33:597-612. [DOI: 10.1016/j.cclet.2021.08.090] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
36 Guo C, Su Y, Wang B, Chen Q, Guo H, Kong M, Chen D. Novel polysaccharide building hybrid nanoparticles: remodelling TAMs to target ERα-positive breast cancer. J Drug Target 2021;:1-13. [PMID: 34927506 DOI: 10.1080/1061186X.2021.2020798] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Sang Y, Deng Q, Cao F, Liu Z, You Y, Liu H, Ren J, Qu X. Remodeling Macrophages by an Iron Nanotrap for Tumor Growth Suppression. ACS Nano 2021;15:19298-309. [PMID: 34783526 DOI: 10.1021/acsnano.1c05392] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
38 Yao Y, Li J, Li P, Wang D, Bao W, Xiao Y, Chen X, He S, Hu J, Yang X. Bacterially Synthesized Tellurium Nanorods for Elimination of Advanced Malignant Tumor by Photothermal Immunotherapy. Small 2021;:e2105716. [PMID: 34889048 DOI: 10.1002/smll.202105716] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
39 Chen S, Wang X, Lin M, Hou Y, Ding M, Kong D, Sun H, Zhang Q, Li J, Zhou Q. Liposome-based nanocomplexes with pH-sensitive second near-infrared photothermal property for combinational immunotherapy. Applied Materials Today 2021;25:101258. [DOI: 10.1016/j.apmt.2021.101258] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
40 Yang H, Lu S, Wang S, Liu L, Zhu B, Yu S, Yang S, Chang J. Evolution of the protein corona affects macrophage polarization. Int J Biol Macromol 2021;191:192-200. [PMID: 34547310 DOI: 10.1016/j.ijbiomac.2021.09.081] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
41 Cao Y, Ding S, Zeng L, Miao J, Wang K, Chen G, Li C, Zhou J, Bian XW, Tian G. Reeducating Tumor-Associated Macrophages Using CpG@Au Nanocomposites to Modulate Immunosuppressive Microenvironment for Improved Radio-Immunotherapy. ACS Appl Mater Interfaces 2021;13:53504-18. [PMID: 34704726 DOI: 10.1021/acsami.1c07626] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
42 Zhang T, Tai Z, Cui Z, Chai R, Zhu Q, Chen Z. Nano-engineered immune cells as "guided missiles" for cancer therapy. J Control Release 2021;341:60-79. [PMID: 34785315 DOI: 10.1016/j.jconrel.2021.11.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
43 Zheng Y, Han Y, Wang T, Liu H, Sun Q, Hu S, Chen J, Li Z. Reprogramming Tumor‐Associated Macrophages via ROS‐Mediated Novel Mechanism of Ultra‐Small Cu 2−x Se Nanoparticles to Enhance Anti‐Tumor Immunity. Adv Funct Materials 2022;32:2108971. [DOI: 10.1002/adfm.202108971] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
44 Cheng H, Fan X, Ye E, Chen H, Yang J, Ke L, You M, Liu M, Zhang YW, Wu YL, Liu G, Loh XJ, Li Z. Dual Tumor Microenvironment Remodeling by Glucose-Contained Radical Copolymer for MRI-Guided Photoimmunotherapy. Adv Mater 2021;:e2107674. [PMID: 34755922 DOI: 10.1002/adma.202107674] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 14.0] [Reference Citation Analysis]
45 Shin S, Lee J, Han J, Li F, Ling D, Park W. Tumor Microenvironment Modulating Functional Nanoparticles for Effective Cancer Treatments. Tissue Eng Regen Med 2021. [PMID: 34674182 DOI: 10.1007/s13770-021-00403-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Wang Y, Yu J, Luo Z, Shi Q, Liu G, Wu F, Wang Z, Huang Y, Zhou D. Engineering Endogenous Tumor-Associated Macrophage-Targeted Biomimetic Nano-RBC to Reprogram Tumor Immunosuppressive Microenvironment for Enhanced Chemo-Immunotherapy. Adv Mater 2021;33:e2103497. [PMID: 34387375 DOI: 10.1002/adma.202103497] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 11.5] [Reference Citation Analysis]
47 Yang Y, Yang Y, Chen M, Chen J, Wang J, Ma Y, Qian H. Injectable shear-thinning polylysine hydrogels for localized immunotherapy of gastric cancer through repolarization of tumor-associated macrophages. Biomater Sci 2021;9:6597-608. [PMID: 34582523 DOI: 10.1039/d1bm01053k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
48 Meng X, Lei Y, Zhang X, Sun K, Zhang L, Wang Z. Cancer immunotherapy: Classification, therapeutic mechanisms, and nanomaterial-based synergistic therapy. Applied Materials Today 2021;24:101149. [DOI: 10.1016/j.apmt.2021.101149] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Guo Q, Li X, Zhou W, Chu Y, Chen Q, Zhang Y, Li C, Chen H, Liu P, Zhao Z, Wang Y, Zhou Z, Luo Y, Li C, You H, Song H, Su B, Zhang T, Sun T, Jiang C. Sequentially Triggered Bacterial Outer Membrane Vesicles for Macrophage Metabolism Modulation and Tumor Metastasis Suppression. ACS Nano 2021. [PMID: 34382768 DOI: 10.1021/acsnano.1c05613] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
50 Chen K, Liu A, Jiang C, Zhao D, Ye Q, Liao Y, Xu C, Shen S, Wang J. Dual-functional super bispecific nano-antibodies derived from monoclonal antibodies potentiate the antitumor effect of innate immune cells. Nano Today 2021;39:101209. [DOI: 10.1016/j.nantod.2021.101209] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 Bender EC, Kraynak CA, Huang W, Suggs LJ. Cell-Inspired Biomaterials for Modulating Inflammation. Tissue Eng Part B Rev 2021. [PMID: 33528306 DOI: 10.1089/ten.TEB.2020.0276] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
52 Kong Y, Liu F, Ma B, Duan J, Yuan W, Sang Y, Han L, Wang S, Liu H. Wireless Localized Electrical Stimulation Generated by an Ultrasound-Driven Piezoelectric Discharge Regulates Proinflammatory Macrophage Polarization. Adv Sci (Weinh) 2021;8:2100962. [PMID: 34258169 DOI: 10.1002/advs.202100962] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
53 Wang Z, Ke M, He L, Dong Q, Liang X, Rao J, Ai J, Tian C, Han X, Zhao Y. Biocompatible and antibacterial soy protein isolate/quaternized chitosan composite sponges for acute upper gastrointestinal hemostasis. Regen Biomater 2021;8:rbab034. [PMID: 34221450 DOI: 10.1093/rb/rbab034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
54 Fu X, Liu X, Hao D, Xiao W, Nie Q, Meng J. Nickel-Catcher-Doped Zwitterionic Hydrogel Coating on Nickel-Titanium Alloy Toward Capture and Detection of Nickel Ions. Front Bioeng Biotechnol 2021;9:698745. [PMID: 34249892 DOI: 10.3389/fbioe.2021.698745] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
55 Choi J, Shim MK, Yang S, Hwang HS, Cho H, Kim J, Yun WS, Moon Y, Kim J, Yoon HY, Kim K. Visible-Light-Triggered Prodrug Nanoparticles Combine Chemotherapy and Photodynamic Therapy to Potentiate Checkpoint Blockade Cancer Immunotherapy. ACS Nano 2021. [PMID: 34165970 DOI: 10.1021/acsnano.1c03416] [Cited by in Crossref: 38] [Cited by in F6Publishing: 44] [Article Influence: 19.0] [Reference Citation Analysis]
56 Luo X, Hu D, Gao D, Wang Y, Chen X, Liu X, Zheng H, Sun M, Sheng Z. Metabolizable Near-Infrared-II Nanoprobes for Dynamic Imaging of Deep-Seated Tumor-Associated Macrophages in Pancreatic Cancer. ACS Nano 2021;15:10010-24. [PMID: 34060821 DOI: 10.1021/acsnano.1c01608] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
57 Zhao R, Cao J, Yang X, Zhang Q, Iqbal MZ, Lu J, Kong X. Inorganic material based macrophage regulation for cancer therapy: basic concepts and recent advances. Biomater Sci 2021;9:4568-90. [PMID: 34113942 DOI: 10.1039/d1bm00508a] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
58 Li C, Qi Y, Zhang Y, Chen Y, Feng J, Zhang X. Artificial Engineering of Immune Cells for Improved Immunotherapy. Adv NanoBio Res 2021;1:2000081. [DOI: 10.1002/anbr.202000081] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
59 Zhang Y, Chen Y, Li J, Zhu X, Liu Y, Wang X, Wang H, Yao Y, Gao Y, Chen Z. Development of Toll-like Receptor Agonist-Loaded Nanoparticles as Precision Immunotherapy for Reprogramming Tumor-Associated Macrophages. ACS Appl Mater Interfaces 2021;13:24442-52. [PMID: 34008947 DOI: 10.1021/acsami.1c01453] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
60 Wei B, Pan J, Yuan R, Shao B, Wang Y, Guo X, Zhou S. Polarization of Tumor-Associated Macrophages by Nanoparticle-Loaded Escherichia coli Combined with Immunogenic Cell Death for Cancer Immunotherapy. Nano Lett 2021;21:4231-40. [PMID: 33998789 DOI: 10.1021/acs.nanolett.1c00209] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 24.0] [Reference Citation Analysis]
61 Shan H, Dou W, Zhang Y, Qi M. Targeted ferritin nanoparticle encapsulating CpG oligodeoxynucleotides induces tumor-associated macrophage M2 phenotype polarization into M1 phenotype and inhibits tumor growth. Nanoscale 2020;12:22268-80. [PMID: 33146206 DOI: 10.1039/d0nr04520a] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 19.0] [Reference Citation Analysis]
62 Kozlovskaya V, Dolmat M, Kharlampieva E. Polymeric Particulates of Controlled Rigidity for Biomedical Applications. ACS Appl Polym Mater 2021;3:2274-89. [DOI: 10.1021/acsapm.1c00157] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
63 Wang J, Zheng C, Zhai Y, Cai Y, Lee RJ, Xing J, Wang H, Zhu HH, Teng L, Li Y, Zhang P. High-density lipoprotein modulates tumor-associated macrophage for chemoimmunotherapy of hepatocellular carcinoma. Nano Today 2021;37:101064. [DOI: 10.1016/j.nantod.2020.101064] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
64 Sun W, Yang J, Hou M, Xie S, Xiong L, Li B, Zhang C. A Nano “Immune‐Guide” Recruiting Lymphocytes and Modulating the Ratio of Macrophages from Different Origins to Enhance Cancer Immunotherapy. Adv Funct Mater 2021;31:2009116. [DOI: 10.1002/adfm.202009116] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
65 Li J, Jiang X, Li H, Gelinsky M, Gu Z. Tailoring Materials for Modulation of Macrophage Fate. Adv Mater 2021;33:e2004172. [PMID: 33565154 DOI: 10.1002/adma.202004172] [Cited by in Crossref: 44] [Cited by in F6Publishing: 51] [Article Influence: 22.0] [Reference Citation Analysis]
66 Li Y, Wang F, Imani S, Tao L, Deng Y, Cai Y. Natural Killer Cells: Friend or Foe in Metabolic Diseases? Front Immunol 2021;12:614429. [PMID: 33717101 DOI: 10.3389/fimmu.2021.614429] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
67 Li X, Shou Y, Tay A. Hydrogels for Engineering the Immune System. Adv NanoBio Res 2021;1:2000073. [DOI: 10.1002/anbr.202000073] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
68 Tang S, Wei H, Yu C. Peptide-functionalized delivery vehicles for enhanced cancer therapy. International Journal of Pharmaceutics 2021;593:120141. [DOI: 10.1016/j.ijpharm.2020.120141] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
69 Ozawa Y, Harutani Y, Oyanagi J, Akamatsu H, Murakami E, Shibaki R, Hayata A, Sugimoto T, Tanaka M, Takakura T, Furuta K, Okuda Y, Sato K, Teraoka S, Ueda H, Tokudome N, Kitamura Y, Fukuoka J, Nakanishi M, Koh Y, Yamamoto N. CD24, not CD47, negatively impacts upon response to PD-1/L1 inhibitors in non-small-cell lung cancer with PD-L1 tumor proportion score < 50. Cancer Sci 2021;112:72-80. [PMID: 33084148 DOI: 10.1111/cas.14705] [Reference Citation Analysis]
70 Venosa A. Senescence in Pulmonary Fibrosis: Between Aging and Exposure. Front Med (Lausanne) 2020;7:606462. [PMID: 33282895 DOI: 10.3389/fmed.2020.606462] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
71 Wang L, Hu YY, Zhao JL, Huang F, Liang SQ, Dong L, Chen Y, Yu HC, Bai J, Yang JM, Fan JY, Feng L, Li SZ, Han H, Qin HY. Targeted delivery of miR-99b reprograms tumor-associated macrophage phenotype leading to tumor regression. J Immunother Cancer 2020;8:e000517. [PMID: 32948650 DOI: 10.1136/jitc-2019-000517] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
72 Zhang X, Zang X, Qiao M, Zhao X, Hu H, Chen D. Targeted Delivery of Dasatinib to Deplete Tumor-Associated Macrophages by Mannosylated Mixed Micelles for Tumor Immunotherapy. ACS Biomater Sci Eng 2020;6:5675-84. [PMID: 33320562 DOI: 10.1021/acsbiomaterials.0c01046] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
73 Liu L, Wang Y, Guo X, Zhao J, Zhou S. A Biomimetic Polymer Magnetic Nanocarrier Polarizing Tumor‐Associated Macrophages for Potentiating Immunotherapy. Small 2020;16:2003543. [DOI: 10.1002/smll.202003543] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 14.3] [Reference Citation Analysis]
74 Sylvestre M, Saxby CP, Kacherovsky N, Gustafson H, Salipante SJ, Pun SH. Identification of a DNA Aptamer That Binds to Human Monocytes and Macrophages. Bioconjug Chem 2020;31:1899-907. [PMID: 32589412 DOI: 10.1021/acs.bioconjchem.0c00247] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
75 Caër C, Wick MJ. Human Intestinal Mononuclear Phagocytes in Health and Inflammatory Bowel Disease. Front Immunol 2020;11:410. [PMID: 32256490 DOI: 10.3389/fimmu.2020.00410] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 10.3] [Reference Citation Analysis]
76 Yang J, Zhang C. Regulation of cancer‐immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy. WIREs Nanomed Nanobiotechnol 2020;12. [DOI: 10.1002/wnan.1612] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]