BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dincer C, Bruch R, Costa-Rama E, Fernández-Abedul MT, Merkoçi A, Manz A, Urban GA, Güder F. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Adv Mater 2019;31:e1806739. [PMID: 31094032 DOI: 10.1002/adma.201806739] [Cited by in Crossref: 226] [Cited by in F6Publishing: 209] [Article Influence: 75.3] [Reference Citation Analysis]
Number Citing Articles
1 Wu C, Zhang Z, Kim T, Jin Kwon S, Lee K, Lee S, Um M, Byun J, Chou T. To investigate the effect of bidirectional dimension changes on the sensitivity of magnetic strain sensors. Chemical Engineering Journal 2022;450:138088. [DOI: 10.1016/j.cej.2022.138088] [Reference Citation Analysis]
2 Khizar S, Zine N, Jaffrezic-renault N, Elaissari A, Errachid A. Prospective analytical role of sensors for environmental screening and monitoring. TrAC Trends in Analytical Chemistry 2022;157:116751. [DOI: 10.1016/j.trac.2022.116751] [Reference Citation Analysis]
3 Barandun G, Gonzalez-Macia L, Lee HS, Dincer C, Güder F. Challenges and Opportunities for Printed Electrical Gas Sensors. ACS Sens 2022. [PMID: 36131601 DOI: 10.1021/acssensors.2c01086] [Reference Citation Analysis]
4 Fan JL, Hu XF, Qin WW, Liu ZY, Liu YS, Gao SJ, Tan LP, Yang JL, Luo LB, Zhang W. UV-light-assisted gas sensor based on PdSe2/InSe heterojunction for ppb-level NO2 sensing at room temperature. Nanoscale 2022. [PMID: 36047737 DOI: 10.1039/d2nr03881a] [Reference Citation Analysis]
5 Wu C, Kim T, Lee S, Um M, Lee S, Lai W, Byun J, Chou T. An overview of composite structural engineering for stretchable strain sensors. Composites Science and Technology 2022. [DOI: 10.1016/j.compscitech.2022.109714] [Reference Citation Analysis]
6 Gabrielli V, Frasconi M. Cellulose-Based Functional Materials for Sensing. Chemosensors 2022;10:352. [DOI: 10.3390/chemosensors10090352] [Reference Citation Analysis]
7 Subbiah Pandi JB, Srinivasan HT, Mani K. Thermo-resistive property of carbon-graphite hybrid based thick film electrode on PET and paper substrates with a smart integrated system for productive soil farming applications. J Mater Sci. [DOI: 10.1007/s10853-022-07603-z] [Reference Citation Analysis]
8 Zhou L, Lyu Z, Sun D, Shen S, Tan T, Wang L, Zhao H, You H. Enhanced Thermal Stability and Energy Transfer by Crystal‐Field Engineering in a Garnet Phosphor for Thermometry and NIR‐LED. Advanced Optical Materials. [DOI: 10.1002/adom.202201308] [Reference Citation Analysis]
9 Amor-Gutiérrez O, Costa-Rama E, Fernández-Abedul MT. Paper-Based Enzymatic Electrochemical Sensors for Glucose Determination. Sensors (Basel) 2022;22:6232. [PMID: 36015999 DOI: 10.3390/s22166232] [Reference Citation Analysis]
10 Khosla NK, Lesinski JM, Colombo M, Bezinge L, deMello AJ, Richards DA. Simplifying the complex: accessible microfluidic solutions for contemporary processes within in vitro diagnostics. Lab Chip 2022. [PMID: 35984715 DOI: 10.1039/d2lc00609j] [Reference Citation Analysis]
11 Bhargava Reddy MS, Kailasa S, Marupalli BCG, Sadasivuni KK, Aich S. A Family of 2D-MXenes: Synthesis, Properties, and Gas Sensing Applications. ACS Sens 2022. [PMID: 35972775 DOI: 10.1021/acssensors.2c01046] [Reference Citation Analysis]
12 Zou B, Lou S, Wang J, Zhou S, Wang Y. Periodic Surface-Enhanced Raman Scattering-Encoded Magnetic Beads for Reliable Quantitative Surface-Enhanced Raman Scattering-Based Multiplex Bioassay. Anal Chem 2022. [PMID: 35960877 DOI: 10.1021/acs.analchem.2c01793] [Reference Citation Analysis]
13 Shu H, Peng S, Lai T, Cui X, Ren J, Chen T, Xiao X, Wang Y. Nickel foam electrode decorated with Fe-CdIn2O4 nanoparticles as an effective electrochemical sensor for non-enzymatic glucose detection. Journal of Electroanalytical Chemistry 2022;919:116524. [DOI: 10.1016/j.jelechem.2022.116524] [Reference Citation Analysis]
14 Andre RS, Mercante LA, Facure MHM, Sanfelice RC, Fugikawa-Santos L, Swager TM, Correa DS. Recent Progress in Amine Gas Sensors for Food Quality Monitoring: Novel Architectures for Sensing Materials and Systems. ACS Sens 2022. [PMID: 35914109 DOI: 10.1021/acssensors.2c00639] [Reference Citation Analysis]
15 Yue X, Xu F, Zhang L, Ren G, Sheng H, Wang J, Wang K, Yu L, Wang J, Li G, Lu G, Yu HD. Simple, Skin-Attachable, and Multifunctional Colorimetric Sweat Sensor. ACS Sens 2022. [PMID: 35903889 DOI: 10.1021/acssensors.2c00581] [Reference Citation Analysis]
16 Ates HC, Nguyen PQ, Gonzalez-macia L, Morales-narváez E, Güder F, Collins JJ, Dincer C. End-to-end design of wearable sensors. Nat Rev Mater. [DOI: 10.1038/s41578-022-00460-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Mushtaq A, Iqbal MZ, Kong X. Antiviral effects of coinage metal-based nanomaterials to combat COVID-19 and its variants. J Mater Chem B 2022;10:5323-43. [PMID: 35775993 DOI: 10.1039/d2tb00849a] [Reference Citation Analysis]
18 Sethi SS, Kovac M, Wiesemüller F, Miriyev A, Boutry CM. Biodegradable sensors are ready to transform autonomous ecological monitoring. Nat Ecol Evol 2022. [PMID: 35835828 DOI: 10.1038/s41559-022-01824-w] [Reference Citation Analysis]
19 Piao X, Guo T, Zou Z, Liao J, Wen H, Guoliang G. Site-splitting inhibition and near-infrared luminescence properties of Cr3+ activated magnetoplumbite SrAl12O19 modified by La and Mg. Spectrochim Acta A Mol Biomol Spectrosc 2022;281:121602. [PMID: 35853259 DOI: 10.1016/j.saa.2022.121602] [Reference Citation Analysis]
20 Glatz RT, Ates HC, Mohsenin H, Weber W, Dincer C. Designing electrochemical microfluidic multiplexed biosensors for on-site applications. Anal Bioanal Chem 2022. [PMID: 35794347 DOI: 10.1007/s00216-022-04210-4] [Reference Citation Analysis]
21 Tortajada-genaro LA, Lucío MI, Maquieira Á. Fast DNA biosensing based on isothermal amplification, unmodified gold nanoparticles, and smartphone detection. Food Control 2022;137:108943. [DOI: 10.1016/j.foodcont.2022.108943] [Reference Citation Analysis]
22 Kankala RK. Nanoarchitectured two-dimensional layered double hydroxides-based nanocomposites for biomedical applications. Adv Drug Deliv Rev 2022;186:114270. [PMID: 35421521 DOI: 10.1016/j.addr.2022.114270] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
23 He C, Asif M, Liu Q, Xiao F, Liu H, Xia BY. Noble Metal Construction for Electrochemical Nonenzymatic Glucose Detection. Adv Materials Technologies. [DOI: 10.1002/admt.202200272] [Reference Citation Analysis]
24 Chen B, Xia H, Mende LK, Lee C, Wang S, Chen A, Xu Z, Kankala RK. Trends in Layered Double Hydroxides‐Based Advanced Nanocomposites: Recent Progress and Latest Advancements. Adv Materials Inter. [DOI: 10.1002/admi.202200373] [Reference Citation Analysis]
25 Wei G, Wang Z, Li R, Wang Y, Li J, Shi Y, He S, Yang Y, Yang Z, Li P. Enhancement of Near‐Infrared Phosphor Luminescence Properties via Construction of Stable and Compact Energy Transfer Paths. Advanced Optical Materials. [DOI: 10.1002/adom.202201076] [Reference Citation Analysis]
26 Shahrbabaki Z, Oveissi F, Farajikhah S, Ghasemian MB, Jansen-van Vuuren RD, Jessop PG, Yun J, Dehghani F, Naficy S. Electrical Response of Poly( N -[3-(dimethylamino)Propyl] Methacrylamide) to CO 2 at a Long Exposure Period. ACS Omega. [DOI: 10.1021/acsomega.2c00914] [Reference Citation Analysis]
27 Kumawat KL, Augustine P, Singh DK, Nanda KK, Krupanidhi SB. Electrically Modulated Wavelength-Selective Photodetection Enabled by MoS2/ZnO Heterostructure. Phys Rev Applied 2022;17. [DOI: 10.1103/physrevapplied.17.064036] [Reference Citation Analysis]
28 Wang X, Zhang M, Zhang L, Xu J, Xiao X, Zhang X. Inkjet-printed flexible sensors: From function materials, manufacture process, and applications perspective. Materials Today Communications 2022;31:103263. [DOI: 10.1016/j.mtcomm.2022.103263] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
29 Granelli R, Alessandri I, Gkoupidenis P, Vassalini I, Kovács-Vajna ZM, Blom PWM, Torricelli F. High-Performance Bioelectronic Circuits Integrated on Biodegradable and Compostable Substrates with Fully Printed Mask-Less Organic Electrochemical Transistors. Small 2022;:e2108077. [PMID: 35642950 DOI: 10.1002/smll.202108077] [Reference Citation Analysis]
30 Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. Food Bioscience 2022;47:101695. [DOI: 10.1016/j.fbio.2022.101695] [Reference Citation Analysis]
31 Crevillen AG, Mayorga-Martinez CC, Vaghasiya JV, Pumera M. 3D-Printed SARS-CoV-2 RNA Genosensing Microfluidic System. Adv Mater Technol 2022;7:2101121. [PMID: 35539284 DOI: 10.1002/admt.202101121] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
32 Li J, Lillehoj PB. Ultrafast Electrothermal Flow-Enhanced Magneto Biosensor for Highly Sensitive Protein Detection in Whole Blood. Angew Chem Int Ed Engl 2022;61:e202200206. [PMID: 35293092 DOI: 10.1002/anie.202200206] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Jia L, Li Z, Wei Q. Bubble generation and growth mechanism in PMMA microfluidic chip. AIP Advances 2022;12:055106. [DOI: 10.1063/5.0084308] [Reference Citation Analysis]
34 Mo J, Liu J, Huang S, Liang B, Huang X, Yang C, Chen M, Liu J, Zhang T, Xie X, Guo J, Liu F, Chen H. Determination of Transdermal Rate of Metallic Microneedle Array through an Impedance Measurements-Based Numerical Check Screening Algorithm. Micromachines 2022;13:718. [DOI: 10.3390/mi13050718] [Reference Citation Analysis]
35 Taha TA, Elsayed HA, Mehaney A. One-dimensional symmetric phononic crystals sensor: towards salinity detection and water treatment. Opt Quant Electron 2022;54. [DOI: 10.1007/s11082-022-03716-6] [Reference Citation Analysis]
36 Fuentes-rubio YA, Zúñiga-ávalos YA, Guzmán-sepúlveda JR, Domínguez-cruz RF. Refractometric Detection of Adulterated Milk Based on Multimode Interference Effects. Foods 2022;11:1075. [DOI: 10.3390/foods11081075] [Reference Citation Analysis]
37 Li J, Lillehoj PB. Ultrafast Electrothermal Flow‐Enhanced Magneto Biosensor for Highly Sensitive Protein Detection in Whole Blood. Angewandte Chemie. [DOI: 10.1002/ange.202200206] [Reference Citation Analysis]
38 Abdelbasset WK, Jasim SA, Bokov DO, Oleneva MS, Islamov A, Hammid AT, Mustafa YF, Yasin G, Alguno AC, Kianfar E. Comparison and evaluation of the performance of graphene-based biosensors. Carbon Lett . [DOI: 10.1007/s42823-022-00338-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
39 Zhang T, Ling C, Wang X, Feng B, Cao M, Xue X, Xue Q, Zhang J, Zhu L, Wang C, Lu H, Liu W. Six‐arm Stellat Dendritic‐PbS Flexible Infrared Photodetector for Intelligent Healthcare Monitoring. Adv Materials Technologies. [DOI: 10.1002/admt.202200250] [Reference Citation Analysis]
40 Jamshed MA, Ali K, Abbasi QH, Imran MA, Ur-rehman M. Challenges, Applications, and Future of Wireless Sensors in Internet of Things: A Review. IEEE Sensors J 2022;22:5482-94. [DOI: 10.1109/jsen.2022.3148128] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
41 Kabay G, DeCastro J, Altay A, Smith K, Lu HW, Capossela AM, Moarefian M, Aran K, Dincer C. Emerging Biosensing Technologies for the Diagnostics of Viral Infectious Diseases. Adv Mater 2022;:e2201085. [PMID: 35288985 DOI: 10.1002/adma.202201085] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Sadeghi K, Kim J, Seo J. Packaging 4.0: The threshold of an intelligent approach. Comp Rev Food Sci Food Safe. [DOI: 10.1111/1541-4337.12932] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
43 Li M, Lyu Q, Peng B, Chen X, Zhang L, Zhu J. Bioinspired Colloidal Photonic Composites: Fabrications and Emerging Applications. Adv Mater 2022;:e2110488. [PMID: 35263465 DOI: 10.1002/adma.202110488] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
44 Ge Y, Liu P, Xu L, Qu M, Hao W, Liang H, Sheng Y, Zhu Y, Wen Y. A portable wireless intelligent electrochemical sensor based on layer-by-layer sandwiched nanohybrid for terbutaline in meat products. Food Chem 2022;371:131140. [PMID: 34583185 DOI: 10.1016/j.foodchem.2021.131140] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
45 Wang C, Li Y, Lv Q, Zheng H, Zhu G, Xu X, Wang Y. Te4+/Bi3+ Co-Doped Double Perovskites with Tunable Dual-Emission for Contactless Light Sensor, Encrypted Information Transmission and White Light Emitting Diodes. Chemical Engineering Journal 2022;431:134135. [DOI: 10.1016/j.cej.2021.134135] [Cited by in Crossref: 8] [Article Influence: 8.0] [Reference Citation Analysis]
46 Cataldi P, Lamanna L, Bertei C, Arena F, Rossi P, Liu M, Di Fonzo F, Papageorgiou DG, Luzio A, Caironi M. An Electrically Conductive Oleogel Paste for Edible Electronics. Adv Funct Materials 2022;32:2113417. [DOI: 10.1002/adfm.202113417] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Park R, Jeon S, Jeong J, Park SY, Han DW, Hong SW. Recent Advances of Point-of-Care Devices Integrated with Molecularly Imprinted Polymers-Based Biosensors: From Biomolecule Sensing Design to Intraoral Fluid Testing. Biosensors (Basel) 2022;12:136. [PMID: 35323406 DOI: 10.3390/bios12030136] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
48 Choi S. Electrogenic Bacteria Promise New Opportunities for Powering, Sensing, and Synthesizing. Small 2022;:e2107902. [PMID: 35119203 DOI: 10.1002/smll.202107902] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Moon HG, Jung Y, Shin B, Lee D, Kim K, Woo DH, Lee S, Kim S, Kang CY, Lee T, Kim C. Identification of Chemical Vapor Mixture Assisted by Artificially Extended Database for Environmental Monitoring. Sensors (Basel) 2022;22:1169. [PMID: 35161915 DOI: 10.3390/s22031169] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Yuan H, Li N, Fan W, Cai H, Zhao D. Metal-Organic Framework Based Gas Sensors. Adv Sci (Weinh) 2022;9:e2104374. [PMID: 34939370 DOI: 10.1002/advs.202104374] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
51 Chadha U, Bhardwaj P, Agarwal R, Rawat P, Agarwal R, Gupta I, Panjwani M, Singh S, Ahuja C, Selvaraj SK, Banavoth M, Sonar P. Recent progress and growth in biosensors technology: A critical review. Journal of Industrial and Engineering Chemistry 2022. [DOI: 10.1016/j.jiec.2022.02.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
52 Shenashen MA, Emran MY, El Sabagh A, Selim MM, Elmarakbi A, El-safty SA. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. Progress in Materials Science 2022;124:100866. [DOI: 10.1016/j.pmatsci.2021.100866] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
53 Wang Y, Liu F, Pu C, Tong Z, Wang M, Wang J. Galactose-imidazole mediated dual-targeting fluorescent probe for detecting Fe3+ in the lysosomes of hepatocytes: Design, synthesis and evaluation. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114083] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Ivanov V, Lizunova A, Rodionova O, Kostrov A, Kornyushin D, Aybush A, Golodyayeva A, Efimov A, Nadtochenko V. Aerosol Dry Printing for SERS and Photoluminescence-Active Gold Nanostructures Preparation for Detection of Traces in Dye Mixtures. Nanomaterials (Basel) 2022;12:448. [PMID: 35159793 DOI: 10.3390/nano12030448] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
55 Faura G, Boix-Lemonche G, Holmeide AK, Verkauskiene R, Volke V, Sokolovska J, Petrovski G. Colorimetric and Electrochemical Screening for Early Detection of Diabetes Mellitus and Diabetic Retinopathy-Application of Sensor Arrays and Machine Learning. Sensors (Basel) 2022;22:718. [PMID: 35161465 DOI: 10.3390/s22030718] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
56 Hamouleh-alipour A, Attariabad A, Farmani A. Fabrication Friendly Plasmonic Metasurface Sensing and Switching Configuration Based on Plasmonic Induced Absorption: Analytical and Numerical Evaluation. Plasmonics. [DOI: 10.1007/s11468-021-01575-7] [Reference Citation Analysis]
57 Cioates Negut C, Stefan-van Staden R, Badulescu M, Bita B. Disposable stochastic sensors obtained by nanolayer deposition of copper, graphene, and copper-graphene composite on silk for the determination of isocitrate dehydrogenases 1 and 2. Anal Bioanal Chem. [DOI: 10.1007/s00216-021-03807-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Wei G, Li P, Li R, Wang Y, Suo H, Yang Y, He S, Li J, Shi Y, Wang Z. Achievement of high efficiency and thermally stable near-infrared phosphors by designing a chromium crystallographic environment for nondestructive testing and night vision. Mater Chem Front . [DOI: 10.1039/d2qm00569g] [Reference Citation Analysis]
59 Umapathi R, Park B, Sonwal S, Rani GM, Cho Y, Huh YS. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends in Food Science & Technology 2022;119:69-89. [DOI: 10.1016/j.tifs.2021.11.018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 17.0] [Reference Citation Analysis]
60 Yao Z, Coatsworth P, Shi X, Zhi J, Hu L, Yan R, Güder F, Yu H. Paper-based sensors for diagnostics, human activity monitoring, food safety and environmental detection. Sens Diagn 2022;1:312-42. [DOI: 10.1039/d2sd00017b] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
61 Tcelykh LO, Vashchenko AA, Medved'ko AV, Marciniak Ł, Aleksandrov AE, Goloveshkin AS, Lepnev LS, Latipov EV, Burlov AS, Utochnikova VV. Ytterbium complexes with 2-(tosylamino)-benzylidene- N -(2-halobenzoyl)-hydrazones for solution-processable NIR OLEDs. J Mater Chem C 2022;10:1371-80. [DOI: 10.1039/d1tc04600d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
62 Zhu R, Zhao Z, Cao J, Li H, Ma L, Zhou K, Yu Z, Wei Q. Effect of Pt-Ni deposition sequence on the bimetal-modified boron-doped diamond on catalytic performance for glucose oxidation in neutral media. Journal of Electroanalytical Chemistry 2022. [DOI: 10.1016/j.jelechem.2022.116084] [Reference Citation Analysis]
63 Kabay G, Manz A, Dincer C. Microfluidic Roadmap for Translational Nanotheranostics. Small Methods 2021;:e2101217. [PMID: 34957704 DOI: 10.1002/smtd.202101217] [Reference Citation Analysis]
64 Sahragard A, Alahmad W, Varanusupakul P. Electrocolorimetric gel-based sensing approach for simultaneous extraction, preconcentration, and detection of iodide and chromium (VI) ions. Talanta 2021;235:122715. [PMID: 34517583 DOI: 10.1016/j.talanta.2021.122715] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Grell M, Barandun G, Asfour T, Kasimatis M, Collins ASP, Wang J, Güder F. Point-of-use sensors and machine learning enable low-cost determination of soil nitrogen. Nat Food 2021;2:981-9. [DOI: 10.1038/s43016-021-00416-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
66 Ameku WA, Ataide VN, Costa ET, Gomes LR, Napoleão-Pêgo P, William Provance D Jr, Paixão TRLC, Salles MO, De-Simone SG. A Pencil-Lead Immunosensor for the Rapid Electrochemical Measurement of Anti-Diphtheria Toxin Antibodies. Biosensors (Basel) 2021;11:489. [PMID: 34940247 DOI: 10.3390/bios11120489] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Emran MY, El‐safty SA, Elmarakbi A, Reda A, El Sabagh A, Shenashen MA. Chipset Nanosensor Based on N‐Doped Carbon Nanobuds for Selective Screening of Epinephrine in Human Samples. Adv Materials Inter 2022;9:2101473. [DOI: 10.1002/admi.202101473] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
68 Chen Z, Guo H, Zhang F, Li X, Yu J, Chen X. Porous ZnO/rGO Nanosheet‐Based NO 2 Gas Sensor with High Sensitivity and ppb‐Level Detection Limit at Room Temperature. Adv Materials Inter 2021;8:2101511. [DOI: 10.1002/admi.202101511] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
69 Yang M, Liu M, Cheng J, Wang H. A movable type bioelectronics printing technology for modular fabrication of biosensors. Sci Rep 2021;11:22323. [PMID: 34785705 DOI: 10.1038/s41598-021-01741-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
70 Sridhar A, Kapoor A, Kumar PS, Ponnuchamy M, Sivasamy B, Vo DN. Lab-on-a-chip technologies for food safety, processing, and packaging applications: a review. Environ Chem Lett 2021;:1-27. [PMID: 34803553 DOI: 10.1007/s10311-021-01342-4] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
71 Zhang G, Zeng H, Liu J, Nagashima K, Takahashi T, Hosomi T, Tanaka W, Yanagida T. Nanowire-based sensor electronics for chemical and biological applications. Analyst 2021;146:6684-725. [PMID: 34667998 DOI: 10.1039/d1an01096d] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
72 Carneiro JO, Ribeiro A, Miranda F, Segundo IR, Landi S Jr, Teixeira V, Costa MFM. Development of Capacitive-Type Sensors by Electrochemical Anodization: Humidity and Touch Sensing Applications. Sensors (Basel) 2021;21:7317. [PMID: 34770624 DOI: 10.3390/s21217317] [Reference Citation Analysis]
73 Phan QA, Truong LB, Medina-Cruz D, Dincer C, Mostafavi E. CRISPR/Cas-powered nanobiosensors for diagnostics. Biosens Bioelectron 2021;197:113732. [PMID: 34741959 DOI: 10.1016/j.bios.2021.113732] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 17.0] [Reference Citation Analysis]
74 Khayamian MA, Parizi MS, Ghaderinia M, Abadijoo H, Vanaei S, Simaee H, Abdolhosseini S, Shalileh S, Faramarzpour M, Naeini VF, Hoseinpour P, Shojaeian F, Abbasvandi F, Abdolahad M. A label-free graphene-based impedimetric biosensor for real-time tracing of the cytokine storm in blood serum; suitable for screening COVID-19 patients. RSC Adv 2021;11:34503-15. [PMID: 35494759 DOI: 10.1039/d1ra04298j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
75 Ferreira RAS, Mamontova E, Botas AMP, Shestakov M, Vanacken J, Moshchalkov V, Guari Y, Chibotaru LF, Luneau D, André PS, Larionova J, Long J, Carlos LD. Synchronous Temperature and Magnetic Field Dual‐Sensing by Luminescence in a Dysprosium Single‐Molecule Magnet. Advanced Optical Materials 2021;9:2101495. [DOI: 10.1002/adom.202101495] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
76 Yuan C, Li R, Liu Y, Zhang L, Zhang J, Leniec G, Sun P, Liu Z, Luo Z, Dong R, Jiang J. Efficient and Broadband LiGaP 2 O 7 :Cr 3+ Phosphors for Smart Near‐Infrared Light‐Emitting Diodes. Laser & Photonics Reviews 2021;15:2100227. [DOI: 10.1002/lpor.202100227] [Cited by in Crossref: 17] [Cited by in F6Publishing: 26] [Article Influence: 17.0] [Reference Citation Analysis]
77 Furlan de Oliveira R, Montes-García V, Ciesielski A, Samorì P. Harnessing selectivity in chemical sensing via supramolecular interactions: from functionalization of nanomaterials to device applications. Mater Horiz 2021;8:2685-708. [PMID: 34605845 DOI: 10.1039/d1mh01117k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
78 Marin M, Nikolic MV, Vidic J. Rapid point-of-need detection of bacteria and their toxins in food using gold nanoparticles. Compr Rev Food Sci Food Saf 2021;20:5880-900. [PMID: 34596343 DOI: 10.1111/1541-4337.12839] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
79 Kingsborough RP, Wrobel AT, Kunz RR. Colourimetry for the sensitive detection of vapour-phase chemicals: State of the art and future trends. TrAC Trends in Analytical Chemistry 2021;143:116397. [DOI: 10.1016/j.trac.2021.116397] [Reference Citation Analysis]
80 Perdomo SA, Marmolejo-tejada JM, Jaramillo-botero A. Review—Bio-Nanosensors: Fundamentals and Recent Applications. J Electrochem Soc 2021;168:107506. [DOI: 10.1149/1945-7111/ac2972] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
81 Vidic J, Manzano M. Electrochemical biosensors for rapid pathogen detection. Current Opinion in Electrochemistry 2021;29:100750. [DOI: 10.1016/j.coelec.2021.100750] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
82 Liu L, Choi S. Enhanced biophotoelectricity generation in cyanobacterial biophotovoltaics with intracellularly biosynthesized gold nanoparticles. Journal of Power Sources 2021;506:230251. [DOI: 10.1016/j.jpowsour.2021.230251] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
83 Sharma A, Tok AIY, Alagappan P, Liedberg B. Point of care testing of sports biomarkers: Potential applications, recent advances and future outlook. TrAC Trends in Analytical Chemistry 2021;142:116327. [DOI: 10.1016/j.trac.2021.116327] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
84 Wang C, Pan T. Structural properties and sensing performances of CoN O ceramic films for EGFET pH sensors. Ceramics International 2021;47:25440-8. [DOI: 10.1016/j.ceramint.2021.05.266] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Liu G. Grand Challenges in Biosensors and Biomolecular Electronics. Front Bioeng Biotechnol 2021;9:707615. [PMID: 34422782 DOI: 10.3389/fbioe.2021.707615] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
86 Ping J, Wu W, Qi L, Liu J, Liu J, Zhao B, Wang Q, Yu L, Lin JM, Hu Q. Hydrogel-assisted paper-based lateral flow sensor for the detection of trypsin in human serum. Biosens Bioelectron 2021;192:113548. [PMID: 34385014 DOI: 10.1016/j.bios.2021.113548] [Reference Citation Analysis]
87 Zhu B, Li X, Zhou L, Su B. An Overview of Wearable and Implantable Electrochemical Glucose Sensors. Electroanalysis 2022;34:237-45. [DOI: 10.1002/elan.202100273] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
88 Li MY, Liu S, Huang Z, Ai Y, Shen K, Lu H, Li M, Wu J. Facile Fabrication of Ultrasensitive Honeycomb Nano-Mesh Ultraviolet Photodetectors Based on Self-Assembled Plasmonic Architectures. ACS Appl Mater Interfaces 2021;13:35972-80. [PMID: 34289689 DOI: 10.1021/acsami.1c08739] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
89 Prosa M, Benvenuti E, Kallweit D, Pellacani P, Toerker M, Bolognesi M, Lopez‐sanchez L, Ragona V, Marabelli F, Toffanin S. Organic Light‐Emitting Transistors in a Smart‐Integrated System for Plasmonic‐Based Sensing. Adv Funct Mater 2021;31:2104927. [DOI: 10.1002/adfm.202104927] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
90 You L, Tian R, Zhou T, Xie R. Broadband near-infrared phosphor BaMgAl10O17:Cr3+ realized by crystallographic site engineering. Chemical Engineering Journal 2021;417:129224. [DOI: 10.1016/j.cej.2021.129224] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 8.0] [Reference Citation Analysis]
91 Olejnik B, Kozioł A, Brzozowska E, Ferens-Sieczkowska M. Application of selected biosensor techniques in clinical diagnostics. Expert Rev Mol Diagn 2021;:1-13. [PMID: 34289786 DOI: 10.1080/14737159.2021.1957833] [Reference Citation Analysis]
92 Tintelott M, Pachauri V, Ingebrandt S, Vu XT. Process Variability in Top-Down Fabrication of Silicon Nanowire-Based Biosensor Arrays. Sensors (Basel) 2021;21:5153. [PMID: 34372390 DOI: 10.3390/s21155153] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
93 Udourioh GA, Solomon MM, Epelle EI. Metal Organic Frameworks as Biosensing Materials for COVID-19. Cell Mol Bioeng 2021;:1-19. [PMID: 34249167 DOI: 10.1007/s12195-021-00686-9] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
94 Miguéis SDC, Tavares APM, Martins GV, Frasco MF, Sales MGF. Biosensors for European Zoonotic Agents: A Current Portuguese Perspective. Sensors (Basel) 2021;21:4547. [PMID: 34283108 DOI: 10.3390/s21134547] [Reference Citation Analysis]
95 Vinoth S, Shalini Devi K, Pandikumar A. A comprehensive review on graphitic carbon nitride based electrochemical and biosensors for environmental and healthcare applications. TrAC Trends in Analytical Chemistry 2021;140:116274. [DOI: 10.1016/j.trac.2021.116274] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 13.0] [Reference Citation Analysis]
96 Mota-morales JD, Morales-narváez E. Transforming nature into the next generation of bio-based flexible devices: New avenues using deep eutectic systems. Matter 2021;4:2141-62. [DOI: 10.1016/j.matt.2021.05.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
97 Nguyen PQ, Soenksen LR, Donghia NM, Angenent-Mari NM, de Puig H, Huang A, Lee R, Slomovic S, Galbersanini T, Lansberry G, Sallum HM, Zhao EM, Niemi JB, Collins JJ. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat Biotechnol 2021. [PMID: 34183860 DOI: 10.1038/s41587-021-00950-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 72] [Article Influence: 2.0] [Reference Citation Analysis]
98 He F, Song E, Zhou Y, Ming H, Chen Z, Wu J, Shao P, Yang X, Xia Z, Zhang Q. A General Ammonium Salt Assisted Synthesis Strategy for Cr 3+ ‐Doped Hexafluorides with Highly Efficient Near Infrared Emissions. Adv Funct Mater 2021;31:2103743. [DOI: 10.1002/adfm.202103743] [Cited by in Crossref: 22] [Cited by in F6Publishing: 32] [Article Influence: 22.0] [Reference Citation Analysis]
99 Mahmoudpour M, Saadati A, Hasanzadeh M, Kholafazad-Kordasht H. A stretchable glove sensor toward rapid monitoring of trifluralin: A new platform for the on-site recognition of herbicides based on wearable flexible sensor technology using lab-on-glove. J Mol Recognit 2021;34:e2923. [PMID: 34131991 DOI: 10.1002/jmr.2923] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
100 Hosseinifard M, Naghdi T, Morales-Narváez E, Golmohammadi H. Toward Smart Diagnostics in a Pandemic Scenario: COVID-19. Front Bioeng Biotechnol 2021;9:637203. [PMID: 34222208 DOI: 10.3389/fbioe.2021.637203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
101 O'Connell L, Marcoux PR, Roupioz Y. Strategies for Surface Immobilization of Whole Bacteriophages: A Review. ACS Biomater Sci Eng 2021;7:1987-2014. [PMID: 34038088 DOI: 10.1021/acsbiomaterials.1c00013] [Reference Citation Analysis]
102 Jiang H, Ji P, Xu Y, Liu X, Kong D. Self-paired dumbbell DNA -assisted simple preparation of stable circular DNAzyme and its application in Pb2+ sensor. Anal Chim Acta 2021;1175:338733. [PMID: 34330440 DOI: 10.1016/j.aca.2021.338733] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
103 Ehsan MA, Khan SA, Rehman A. Screen-Printed Graphene/Carbon Electrodes on Paper Substrates as Impedance Sensors for Detection of Coronavirus in Nasopharyngeal Fluid Samples. Diagnostics (Basel) 2021;11:1030. [PMID: 34205178 DOI: 10.3390/diagnostics11061030] [Cited by in F6Publishing: 13] [Reference Citation Analysis]
104 Jadoon T, Mahmood T, Ayub K. DFT study on the sensitivity of silver-graphene quantum dots for vital and harmful analytes. Journal of Physics and Chemistry of Solids 2021;153:110028. [DOI: 10.1016/j.jpcs.2021.110028] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
105 Yeh Y, Chiang W. Ag Microplasma-Engineered Nanoassemblies on Cellulose Papers for Surface-Enhanced Raman Scattering and Catalytic Nitrophenol Reduction. ACS Appl Nano Mater 2021;4:6364-75. [DOI: 10.1021/acsanm.1c01290] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
106 Castle LM, Schuh DA, Reynolds EE, Furst AL. Electrochemical Sensors to Detect Bacterial Foodborne Pathogens. ACS Sens 2021;6:1717-30. [PMID: 33955227 DOI: 10.1021/acssensors.1c00481] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 16.0] [Reference Citation Analysis]
107 Li R, Liu Y, Yuan C, Leniec G, Miao L, Sun P, Liu Z, Luo Z, Dong R, Jiang J. Thermally Stable CaLu 2 Mg 2 Si 3 O 12 :Cr 3+ Phosphors for NIR LEDs. Advanced Optical Materials 2021;9:2100388. [DOI: 10.1002/adom.202100388] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 20.0] [Reference Citation Analysis]
108 Altay A, Learney R, Güder F, Dincer C. Sensors in Blockchain. Trends Biotechnol 2021:S0167-7799(21)00112-8. [PMID: 34024648 DOI: 10.1016/j.tibtech.2021.04.011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
109 Landi G, Neitzert H. Application of a Bio-Nanocomposite Tissue as an NIR Optical Receiver and a Temperature Sensor. ACS Appl Electron Mater 2021;3:2790-7. [DOI: 10.1021/acsaelm.1c00368] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
110 Li H, Gu S, Zhang Q, Song E, Kuang T, Chen F, Yu X, Chang L. Recent advances in biofluid detection with micro/nanostructured bioelectronic devices. Nanoscale 2021;13:3436-53. [PMID: 33538736 DOI: 10.1039/d0nr07478k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
111 Ryu J, Choi S. Bioelectricity production from sweat-activated germination of bacterial endospores. Biosens Bioelectron 2021;186:113293. [PMID: 33964796 DOI: 10.1016/j.bios.2021.113293] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
112 Wagner HJ, Weber W, Fussenegger M. Synthetic Biology: Emerging Concepts to Design and Advance Adeno-Associated Viral Vectors for Gene Therapy. Adv Sci (Weinh) 2021;8:2004018. [PMID: 33977059 DOI: 10.1002/advs.202004018] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
113 Song Z, Ye W, Chen Z, Chen Z, Li M, Tang W, Wang C, Wan Z, Poddar S, Wen X, Pan X, Lin Y, Zhou Q, Fan Z. Wireless Self-Powered High-Performance Integrated Nanostructured-Gas-Sensor Network for Future Smart Homes. ACS Nano 2021;15:7659-67. [PMID: 33871965 DOI: 10.1021/acsnano.1c01256] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 14.0] [Reference Citation Analysis]
114 Rayappa MK, Viswanathan PA, Rattu G, Krishna PM. Nanomaterials Enabled and Bio/Chemical Analytical Sensors for Acrylamide Detection in Thermally Processed Foods: Advances and Outlook. J Agric Food Chem 2021;69:4578-603. [PMID: 33851531 DOI: 10.1021/acs.jafc.0c07956] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Zarejousheghani M, Rahimi P, Borsdorf H, Zimmermann S, Joseph Y. Molecularly Imprinted Polymer-Based Sensors for Priority Pollutants. Sensors (Basel) 2021;21:2406. [PMID: 33807242 DOI: 10.3390/s21072406] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
116 Komatsu T, Maeda R, Maeki M, Ishida A, Tani H, Tokeshi M. Dip-Type Paper-Based Analytical Device for Straightforward Quantitative Detection without Precise Sample Introduction. ACS Sens 2021;6:1094-102. [PMID: 33660502 DOI: 10.1021/acssensors.0c02367] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
117 Batista ÉA, Silva GNM, Sgobbi LF, Machado FB, Macedo IY, Moreno EK, Neto JR, Scalize PS, Gil ES. Enzymatic Electroanalytical Biosensor Based on Maramiellus colocasiae Fungus for Detection of Phytomarkers in Infusions and Green Tea Kombucha. Biosensors (Basel) 2021;11:91. [PMID: 33810105 DOI: 10.3390/bios11030091] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
118 Pinelli F, Magagnin L, Rossi F. Can nanostructures improve hydrogel-based biosensors performance? Nanomedicine (Lond) 2021;16:681-3. [PMID: 33733822 DOI: 10.2217/nnm-2021-0053] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
119 Raghavan VS, O'Driscoll B, Bloor JM, Li B, Katare P, Sethi J, Gorthi SS, Jenkins D. Emerging graphene-based sensors for the detection of food adulterants and toxicants - A review. Food Chem 2021;355:129547. [PMID: 33773454 DOI: 10.1016/j.foodchem.2021.129547] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
120 Brunauer A, Verboket RD, Kainz DM, von Stetten F, Früh SM. Rapid Detection of Pathogens in Wound Exudate via Nucleic Acid Lateral Flow Immunoassay. Biosensors (Basel) 2021;11:74. [PMID: 33800856 DOI: 10.3390/bios11030074] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
121 Zeng H, Zhang G, Nagashima K, Takahashi T, Hosomi T, Yanagida T. Metal–Oxide Nanowire Molecular Sensors and Their Promises. Chemosensors 2021;9:41. [DOI: 10.3390/chemosensors9020041] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 14.0] [Reference Citation Analysis]
122 Naresh V, Lee N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors (Basel) 2021;21:1109. [PMID: 33562639 DOI: 10.3390/s21041109] [Cited by in Crossref: 14] [Cited by in F6Publishing: 119] [Article Influence: 14.0] [Reference Citation Analysis]
123 Bag A, Lee N. Recent Advancements in Development of Wearable Gas Sensors. Adv Materials Technologies 2021;6:2000883. [DOI: 10.1002/admt.202000883] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 26.0] [Reference Citation Analysis]
124 Dabbagh SR, Becher E, Ghaderinezhad F, Havlucu H, Ozcan O, Ozkan M, Yetisen AK, Tasoglu S. Increasing the packing density of assays in paper-based microfluidic devices. Biomicrofluidics 2021;15:011502. [PMID: 33569089 DOI: 10.1063/5.0042816] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
125 Ates HC, Yetisen AK, Güder F, Dincer C. Wearable devices for the detection of COVID-19. Nat Electron 2021;4:13-4. [DOI: 10.1038/s41928-020-00533-1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 42] [Article Influence: 23.0] [Reference Citation Analysis]
126 Zhuo Y, Brgoch J. Opportunities for Next-Generation Luminescent Materials through Artificial Intelligence. J Phys Chem Lett 2021;12:764-72. [PMID: 33423499 DOI: 10.1021/acs.jpclett.0c03203] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
127 Megahd H, Oldani C, Radice S, Lanfranchi A, Patrini M, Lova P, Comoretto D. Aquivion–Poly( N ‐vinylcarbazole) Holistic Flory–Huggins Photonic Vapor Sensors. Adv Optical Mater 2021;9:2002006. [DOI: 10.1002/adom.202002006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
128 Scordo G, Bertana V, Ballesio A, Carcione R, Marasso SL, Cocuzza M, Pirri CF, Manachino M, Gomez Gomez M, Vitale A, Chiodoni A, Tamburri E, Scaltrito L. Effect of Volatile Organic Compounds Adsorption on 3D-Printed PEGDA:PEDOT for Long-Term Monitoring Devices. Nanomaterials (Basel) 2021;11:E94. [PMID: 33406608 DOI: 10.3390/nano11010094] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
129 Ates HC, Brunauer A, Stetten F, Urban GA, Güder F, Merkoçi A, Früh SM, Dincer C. Integrated Devices for Non‐Invasive Diagnostics. Adv Funct Mater 2021;31:2010388. [DOI: 10.1002/adfm.202010388] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 17.0] [Reference Citation Analysis]
130 Vizzini P, Manzano M, Farre C, Meylheuc T, Chaix C, Ramarao N, Vidic J. Highly sensitive detection of Campylobacter spp. In chicken meat using a silica nanoparticle enhanced dot blot DNA biosensor. Biosensors and Bioelectronics 2021;171:112689. [DOI: 10.1016/j.bios.2020.112689] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
131 Liu S, Cai H, Zhang S, Song Z, Xia Z, Liu Q. Site engineering strategy toward enhanced luminescence thermostability of a Cr 3+ -doped broadband NIR phosphor and its application. Mater Chem Front 2021;5:3841-9. [DOI: 10.1039/d1qm00074h] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 24.0] [Reference Citation Analysis]
132 Chu N, Liang Q, Hao W, Jiang Y, Liang P, Zeng RJ. Microbial electrochemical sensor for water biotoxicity monitoring. Chemical Engineering Journal 2021;404:127053. [DOI: 10.1016/j.cej.2020.127053] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 15.0] [Reference Citation Analysis]
133 Mondal S, Subramaniam C. Scalable approach towards specific and ultrasensitive cation sensing under harsh environmental conditions by engineering the analyte–transducer interface. Nanoscale Adv 2021;3:3752-61. [DOI: 10.1039/d0na01042a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
134 Mahmoudi T, Pourhassan-Moghaddam M, Shirdel B, Baradaran B, Morales-Narváez E, Golmohammadi H. (Nano)tag-antibody conjugates in rapid tests. J Mater Chem B 2021;9:5414-38. [PMID: 34143173 DOI: 10.1039/d1tb00571e] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
135 Huang D, Zhu H, Deng Z, Yang H, Hu J, Liang S, Chen D, Ma E, Guo W. A highly efficient and thermally stable broadband Cr 3+ -activated double borate phosphor for near-infrared light-emitting diodes. J Mater Chem C 2021;9:164-72. [DOI: 10.1039/d0tc04803h] [Cited by in Crossref: 18] [Cited by in F6Publishing: 55] [Article Influence: 18.0] [Reference Citation Analysis]
136 Huang X, Zhang R, Chen C, Kwok RTK, Tang BZ. Wash-free detection and bioimaging by AIEgens. Mater Chem Front 2021;5:723-43. [DOI: 10.1039/d0qm00586j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
137 Yakoh A, Pimpitak U, Rengpipat S, Hirankarn N, Chailapakul O, Chaiyo S. Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosens Bioelectron 2021;176:112912. [PMID: 33358057 DOI: 10.1016/j.bios.2020.112912] [Cited by in Crossref: 41] [Cited by in F6Publishing: 27] [Article Influence: 20.5] [Reference Citation Analysis]
138 Sibug-torres SM, Go LP, Enriquez EP. Fabrication of a 3D-Printed Porous Junction for Ag|AgCl|gel-KCl Reference Electrode. Chemosensors 2020;8:130. [DOI: 10.3390/chemosensors8040130] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
139 Curulli A. Nanomaterials in Electrochemical Sensing Area: Applications and Challenges in Food Analysis. Molecules 2020;25:E5759. [PMID: 33297366 DOI: 10.3390/molecules25235759] [Cited by in Crossref: 3] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
140 Nunez-Bajo E, Silva Pinto Collins A, Kasimatis M, Cotur Y, Asfour T, Tanriverdi U, Grell M, Kaisti M, Senesi G, Stevenson K, Güder F. Disposable silicon-based all-in-one micro-qPCR for rapid on-site detection of pathogens. Nat Commun 2020;11:6176. [PMID: 33268779 DOI: 10.1038/s41467-020-19911-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
141 Krikstolaityte V, Ding R, Chua Hui Xia E, Lisak G. Paper as sampling substrates and all-integrating platforms in potentiometric ion determination. TrAC Trends in Analytical Chemistry 2020;133:116070. [DOI: 10.1016/j.trac.2020.116070] [Cited by in Crossref: 12] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
142 Sharova AS, Melloni F, Lanzani G, Bettinger CJ, Caironi M. Edible Electronics: The Vision and the Challenge. Adv Mater Technol 2021;6:2000757. [DOI: 10.1002/admt.202000757] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 10.5] [Reference Citation Analysis]
143 Sharafeldin M, Davis JJ. Point of Care Sensors for Infectious Pathogens. Anal Chem 2021;93:184-97. [DOI: 10.1021/acs.analchem.0c04677] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
144 Hernández-Rodríguez JF, Rojas D, Escarpa A. Electrochemical Sensing Directions for Next-Generation Healthcare: Trends, Challenges, and Frontiers. Anal Chem 2021;93:167-83. [PMID: 33174738 DOI: 10.1021/acs.analchem.0c04378] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
145 Alberti G, Zanoni C, Magnaghi LR, Biesuz R. Disposable and Low-Cost Colorimetric Sensors for Environmental Analysis. Int J Environ Res Public Health 2020;17:E8331. [PMID: 33187161 DOI: 10.3390/ijerph17228331] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
146 Yan K, Karthick Kannan P, Doonyapisut D, Wu K, Chung C, Zhang J. Advanced Functional Electroactive and Photoactive Materials for Monitoring the Environmental Pollutants. Adv Funct Mater 2021;31:2008227. [DOI: 10.1002/adfm.202008227] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
147 Drago E, Campardelli R, Pettinato M, Perego P. Innovations in Smart Packaging Concepts for Food: An Extensive Review. Foods 2020;9:E1628. [PMID: 33171881 DOI: 10.3390/foods9111628] [Cited by in Crossref: 15] [Cited by in F6Publishing: 42] [Article Influence: 7.5] [Reference Citation Analysis]
148 Ariga K. Molecular recognition at the air-water interface: nanoarchitectonic design and physicochemical understanding. Phys Chem Chem Phys 2020;22:24856-69. [PMID: 33140772 DOI: 10.1039/d0cp04174b] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
149 Jin X, Wu X, Zhang F, Zhao H, Zhong W, Cao Y, Ma X, Leng X, Zhou H, She M. Cu2+/ATP reversible ratiometric fluorescent probe through strip, hydrogel, and nanofiber, and its application in living cells and edaphic ecological safety assessment. Dyes and Pigments 2020;182:108677. [DOI: 10.1016/j.dyepig.2020.108677] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
150 Hamedpour V, Oliveri P, Malegori C, Minami T. Development of a morphological color image processing algorithm for paper-based analytical devices. Sensors and Actuators B: Chemical 2020;322:128571. [DOI: 10.1016/j.snb.2020.128571] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
151 Liu X, Zhang Q, Gao G. Solvent-Resistant and Nonswellable Hydrogel Conductor toward Mechanical Perception in Diverse Liquid Media. ACS Nano 2020;14:13709-17. [PMID: 32924434 DOI: 10.1021/acsnano.0c05932] [Cited by in Crossref: 47] [Cited by in F6Publishing: 36] [Article Influence: 23.5] [Reference Citation Analysis]
152 Cui H, Zheng K, Xie Z, Yu J, Zhu X, Ren H, Wang Z, Zhang F, Li X, Tao LQ, Zhang H, Chen X. Tellurene Nanoflake-Based NO2 Sensors with Superior Sensitivity and a Sub-Parts-per-Billion Detection Limit. ACS Appl Mater Interfaces 2020;12:47704-13. [PMID: 33017141 DOI: 10.1021/acsami.0c15964] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 8.5] [Reference Citation Analysis]
153 Evtugyn G, Porfireva A, Shamagsumova R, Hianik T. Advances in Electrochemical Aptasensors Based on Carbon Nanomaterials. Chemosensors 2020;8:96. [DOI: 10.3390/chemosensors8040096] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
154 Climent E, Biyikal M, Gröninger D, Weller MG, Martínez-Máñez R, Rurack K. Multiplexed Detection of Analytes on Single Test Strips with Antibody-Gated Indicator-Releasing Mesoporous Nanoparticles. Angew Chem Int Ed Engl 2020;59:23862-9. [PMID: 32894638 DOI: 10.1002/anie.202009000] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
155 Avola D, Cinque L, De Marsico M, Fagioli A, Foresti GL. LieToMe: Preliminary study on hand gestures for deception detection via Fisher-LSTM. Pattern Recognition Letters 2020;138:455-61. [DOI: 10.1016/j.patrec.2020.08.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
156 Climent E, Biyikal M, Gröninger D, Weller MG, Martínez‐máñez R, Rurack K. Multiplex‐Nachweis von Analyten auf einem einzelnen Teststreifen mit Antikörper‐gesteuerten und Indikator freisetzenden mesoporösen Nanopartikeln. Angew Chem 2020;132:24071-8. [DOI: 10.1002/ange.202009000] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
157 Li B, Tan H, Jenkins D, Srinivasa Raghavan V, Rosa BG, Güder F, Pan G, Yeatman E, Sharp DJ. Clinical detection of neurodegenerative blood biomarkers using graphene immunosensor. Carbon 2020;168:144-62. [DOI: 10.1016/j.carbon.2020.06.048] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
158 Sailapu SK, Kraikaew P, Sabaté N, Bakker E. Self-Powered Potentiometric Sensor Transduction to a Capacitive Electronic Component for Later Readout. ACS Sens 2020;5:2909-14. [PMID: 32881477 DOI: 10.1021/acssensors.0c01284] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
159 Bonini A, Poma N, Vivaldi F, Kirchhain A, Salvo P, Bottai D, Tavanti A, Di Francesco F. Advances in biosensing: The CRISPR/Cas system as a new powerful tool for the detection of nucleic acids. J Pharm Biomed Anal 2021;192:113645. [PMID: 33039910 DOI: 10.1016/j.jpba.2020.113645] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
160 Asif M, Ajmal M, Ashraf G, Muhammad N, Aziz A, Iftikhar T, Wang J, Liu H. The role of biosensors in coronavirus disease-2019 outbreak. Curr Opin Electrochem 2020;23:174-84. [PMID: 32984642 DOI: 10.1016/j.coelec.2020.08.011] [Cited by in Crossref: 33] [Cited by in F6Publishing: 58] [Article Influence: 16.5] [Reference Citation Analysis]
161 Chiappini A, Pasquardini L, Bossi AM. Molecular Imprinted Polymers Coupled to Photonic Structures in Biosensors: The State of Art. Sensors (Basel) 2020;20:E5069. [PMID: 32906637 DOI: 10.3390/s20185069] [Cited by in Crossref: 5] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
162 Funari R, Chu KY, Shen AQ. Detection of antibodies against SARS-CoV-2 spike protein by gold nanospikes in an opto-microfluidic chip. Biosens Bioelectron 2020;169:112578. [PMID: 32911317 DOI: 10.1016/j.bios.2020.112578] [Cited by in Crossref: 52] [Cited by in F6Publishing: 99] [Article Influence: 26.0] [Reference Citation Analysis]
163 Xie RJ. Light-emitting diodes: brighter NIR-emitting phosphor making light sources smarter. Light Sci Appl 2020;9:155. [PMID: 32944231 DOI: 10.1038/s41377-020-00394-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 28] [Article Influence: 6.5] [Reference Citation Analysis]
164 Zhang H, Chan-Park MB, Wang M. Functional Polymers and Polymer-Dye Composites for Food Sensing. Macromol Rapid Commun 2020;41:e2000279. [PMID: 32840324 DOI: 10.1002/marc.202000279] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
165 Khristunova E, Dorozhko E, Korotkova E, Kratochvil B, Vyskocil V, Barek J. Label-Free Electrochemical Biosensors for the Determination of Flaviviruses: Dengue, Zika, and Japanese Encephalitis. Sensors (Basel) 2020;20:E4600. [PMID: 32824351 DOI: 10.3390/s20164600] [Cited by in Crossref: 5] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
166 Jung W, Uddin MJ, Namkoong K, Chung W, Kim JH, Shim JS. Toward a disposable low-cost LOC device: heterogeneous polymer micro valve and pump fabricated by UV/ozone-assisted thermal fusion bonding. RSC Adv 2020;10:28390-6. [PMID: 35519138 DOI: 10.1039/d0ra03830j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
167 He S, Yuan Y, Nag A, Feng S, Afsarimanesh N, Han T, Mukhopadhyay SC, Organ DR. A Review on the Use of Impedimetric Sensors for the Inspection of Food Quality. Int J Environ Res Public Health 2020;17:E5220. [PMID: 32698330 DOI: 10.3390/ijerph17145220] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
168 Mazurkiewicz W, Podrażka M, Jarosińska E, Kappalakandy Valapil K, Wiloch M, Jönsson‐niedziółka M, Witkowska Nery E. Paper‐Based Electrochemical Sensors and How to Make Them (Work). ChemElectroChem 2020;7:2939-56. [DOI: 10.1002/celc.202000512] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
169 Mazur F, Tran H, Kuchel RP, Chandrawati R. Rapid Detection of Listeriolysin O Toxin Based on a Nanoscale Liposome–Gold Nanoparticle Platform. ACS Appl Nano Mater 2020;3:7270-80. [DOI: 10.1021/acsanm.0c01602] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
170 Ireta-Muñoz LA, Morales-Narváez E. Smartphone and Paper-Based Fluorescence Reader: A Do It Yourself Approach. Biosensors (Basel) 2020;10:E60. [PMID: 32498366 DOI: 10.3390/bios10060060] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
171 Adeel M, Rahman MM, Caligiuri I, Canzonieri V, Rizzolio F, Daniele S. Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions. Biosens Bioelectron 2020;165:112331. [PMID: 32729477 DOI: 10.1016/j.bios.2020.112331] [Cited by in Crossref: 33] [Cited by in F6Publishing: 17] [Article Influence: 16.5] [Reference Citation Analysis]
172 Wang P, Cai Z, Li J, Li Y, Zu B, Dou X. Dimension Confinement Effect Boosted Ultrasensitive Colorimetric Signal Concentrating. Adv Optical Mater 2020;8:2000524. [DOI: 10.1002/adom.202000524] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
173 Khizar S, Ben Halima H, Ahmad NM, Zine N, Errachid A, Elaissari A. Magnetic nanoparticles in microfluidic and sensing: From transport to detection. ELECTROPHORESIS 2020;41:1206-24. [DOI: 10.1002/elps.201900377] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
174 Jia Z, Yuan C, Liu Y, Wang XJ, Sun P, Wang L, Jiang H, Jiang J. Strategies to approach high performance in Cr3+-doped phosphors for high-power NIR-LED light sources. Light Sci Appl 2020;9:86. [PMID: 32435469 DOI: 10.1038/s41377-020-0326-8] [Cited by in Crossref: 96] [Cited by in F6Publishing: 189] [Article Influence: 48.0] [Reference Citation Analysis]
175 Masson JF. Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst 2020;145:3776-800. [PMID: 32374303 DOI: 10.1039/d0an00316f] [Cited by in Crossref: 31] [Cited by in F6Publishing: 45] [Article Influence: 15.5] [Reference Citation Analysis]
176 Morales-Narváez E, Dincer C. The impact of biosensing in a pandemic outbreak: COVID-19. Biosens Bioelectron 2020;163:112274. [PMID: 32421627 DOI: 10.1016/j.bios.2020.112274] [Cited by in Crossref: 108] [Cited by in F6Publishing: 146] [Article Influence: 54.0] [Reference Citation Analysis]
177 Gazis A, Katsiri E. A wireless sensor network for underground passages: Remote sensing and wildlife monitoring. Engineering Reports 2020;2. [DOI: 10.1002/eng2.12170] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
178 Silva NF, Neves MM, Magalhães JM, Freire C, Delerue-matos C. Emerging electrochemical biosensing approaches for detection of Listeria monocytogenes in food samples: An overview. Trends in Food Science & Technology 2020;99:621-33. [DOI: 10.1016/j.tifs.2020.03.031] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
179 Zhang X, Ye T, Meng X, Tian Z, Pang L, Han Y, Li H, Lu G, Xiu F, Yu HD, Liu J, Huang W. Sustainable and Transparent Fish Gelatin Films for Flexible Electroluminescent Devices. ACS Nano 2020;14:3876-84. [PMID: 32186191 DOI: 10.1021/acsnano.9b09880] [Cited by in Crossref: 48] [Cited by in F6Publishing: 32] [Article Influence: 24.0] [Reference Citation Analysis]
180 Cotur Y, Kasimatis M, Kaisti M, Olenik S, Georgiou C, Güder F. Stretchable Composite Acoustic Transducer for Wearable Monitoring of Vital Signs. Adv Funct Mater 2020;30:1910288. [PMID: 33071715 DOI: 10.1002/adfm.201910288] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
181 Lee H, Yang J, Liao J, Sitjar J, Liu BH, Sivashanmugan K, Fu W, Chen GD. Dielectric Nanoparticles Coated upon Silver Hollow Nanosphere as an Integrated Design to Reinforce SERS Detection of Trace Ampicillin in Milk Solution. Coatings 2020;10:390. [DOI: 10.3390/coatings10040390] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
182 Ates HC, Roberts JA, Lipman J, Cass AEG, Urban GA, Dincer C. On-Site Therapeutic Drug Monitoring. Trends Biotechnol 2020;38:1262-77. [PMID: 33058758 DOI: 10.1016/j.tibtech.2020.03.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 12.0] [Reference Citation Analysis]
183 Martín Várguez PE, Brunel F, Raimundo JM. Recent Electrochemical/Electrical Microfabricated Sensor Devices for Ionic and Polyionic Analytes. ACS Omega 2020;5:4733-42. [PMID: 32201758 DOI: 10.1021/acsomega.9b04331] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
184 Hamedpour V, Oliveri P, Leardi R, Citterio D. Chemometric challenges in development of paper-based analytical devices: Optimization and image processing. Anal Chim Acta 2020;1101:1-8. [PMID: 32029100 DOI: 10.1016/j.aca.2019.11.064] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
185 Prosa M, Bolognesi M, Fornasari L, Grasso G, Lopez-Sanchez L, Marabelli F, Toffanin S. Nanostructured Organic/Hybrid Materials and Components in Miniaturized Optical and Chemical Sensors. Nanomaterials (Basel) 2020;10:E480. [PMID: 32155993 DOI: 10.3390/nano10030480] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
186 Renganathan V, Balaji R, Chen S, Kokulnathan T. Coherent design of palladium nanostructures adorned on the boron nitride heterojunctions for the unparalleled electrochemical determination of fatal organophosphorus pesticides. Sensors and Actuators B: Chemical 2020;307:127586. [DOI: 10.1016/j.snb.2019.127586] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 9.5] [Reference Citation Analysis]
187 Kamarudin SF, Mustapha M, Kim J. Green Strategies to Printed Sensors for Healthcare Applications. Polymer Reviews 2021;61:116-56. [DOI: 10.1080/15583724.2020.1729180] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
188 Li W, Zhang X, Miao C, Li R, Ji Y. Fluorescent paper-based sensor based on carbon dots for detection of folic acid. Anal Bioanal Chem 2020;412:2805-13. [PMID: 32078004 DOI: 10.1007/s00216-020-02507-w] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
189 Patel BR, Noroozifar M, Kerman K. Review—Nanocomposite-Based Sensors for Voltammetric Detection of Hazardous Phenolic Pollutants in Water. J Electrochem Soc 2020;167:037568. [DOI: 10.1149/1945-7111/ab71fa] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
190 Dai L, Wang Y, Zou X, Chen Z, Liu H, Ni Y. Ultrasensitive Physical, Bio, and Chemical Sensors Derived from 1-, 2-, and 3-D Nanocellulosic Materials. Small 2020;16:e1906567. [PMID: 32049432 DOI: 10.1002/smll.201906567] [Cited by in Crossref: 52] [Cited by in F6Publishing: 68] [Article Influence: 26.0] [Reference Citation Analysis]
191 Torre R, Costa-rama E, Nouws HPA, Delerue-matos C. Diamine oxidase-modified screen-printed electrode for the redox-mediated determination of histamine. J Anal Sci Technol 2020;11. [DOI: 10.1186/s40543-020-0203-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
192 Rahmanudin A, Tate DJ, Marcial‐hernandez R, Bull N, Garlapati SK, Zamhuri A, Khan RU, Faraji S, Gollu SR, Persaud KC, Turner ML. Robust High‐Capacitance Polymer Gate Dielectrics for Stable Low‐Voltage Organic Field‐Effect Transistor Sensors. Adv Electron Mater 2020;6:1901127. [DOI: 10.1002/aelm.201901127] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
193 Hetemi D, Noël V, Pinson J. Grafting of Diazonium Salts on Surfaces: Application to Biosensors. Biosensors (Basel) 2020;10:E4. [PMID: 31952195 DOI: 10.3390/bios10010004] [Cited by in Crossref: 30] [Cited by in F6Publishing: 50] [Article Influence: 15.0] [Reference Citation Analysis]
194 Wieland F, Bruch R, Bergmann M, Partel S, Urban GA, Dincer C. Enhanced Protein Immobilization on Polymers-A Plasma Surface Activation Study. Polymers (Basel) 2020;12:E104. [PMID: 31947987 DOI: 10.3390/polym12010104] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
195 Bai Y, Xu T, Zhang X. Graphene-Based Biosensors for Detection of Biomarkers. Micromachines (Basel) 2020;11:E60. [PMID: 31947894 DOI: 10.3390/mi11010060] [Cited by in Crossref: 33] [Cited by in F6Publishing: 48] [Article Influence: 16.5] [Reference Citation Analysis]
196 Gong X, Zhang L, Huang Y, Wang S, Pan G, Li L. Directly writing flexible temperature sensor with graphene nanoribbons for disposable healthcare devices. RSC Adv 2020;10:22222-9. [DOI: 10.1039/d0ra02815k] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
197 Wen N, Zhang L, Jiang D, Wu Z, Li B, Sun C, Guo Z. Emerging flexible sensors based on nanomaterials: recent status and applications. J Mater Chem A 2020;8:25499-527. [DOI: 10.1039/d0ta09556g] [Cited by in Crossref: 15] [Cited by in F6Publishing: 28] [Article Influence: 7.5] [Reference Citation Analysis]
198 Behera S, Rana G, Satapathy S, Mohanty M, Pradhan S, Panda MK, Ningthoujam R, Hazarika BN, Singh YD. Biosensors in diagnosing COVID-19 and recent development. Sensors International 2020;1:100054. [DOI: 10.1016/j.sintl.2020.100054] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
199 Costa E, Climent E, Gawlitza K, Wan W, Weller MG, Rurack K. Optimization of analytical assay performance of antibody-gated indicator-releasing mesoporous silica particles. J Mater Chem B 2020;8:4950-61. [DOI: 10.1039/d0tb00371a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
200 Korram J, Dewangan L, Karbhal I, Nagwanshi R, Vaishanav SK, Ghosh KK, Satnami ML. CdTe QD-based inhibition and reactivation assay of acetylcholinesterase for the detection of organophosphorus pesticides. RSC Adv 2020;10:24190-202. [DOI: 10.1039/d0ra03055d] [Cited by in Crossref: 10] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
201 Kasimatis M, Nunez-Bajo E, Grell M, Cotur Y, Barandun G, Kim JS, Güder F. Monolithic Solder-On Nanoporous Si-Cu Contacts for Stretchable Silicone Composite Sensors. ACS Appl Mater Interfaces 2019;11:47577-86. [PMID: 31714731 DOI: 10.1021/acsami.9b17076] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
202 Bruch R, Baaske J, Chatelle C, Meirich M, Madlener S, Weber W, Dincer C, Urban GA. CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free miRNA Diagnostics. Adv Mater 2019;31:e1905311. [PMID: 31663165 DOI: 10.1002/adma.201905311] [Cited by in Crossref: 128] [Cited by in F6Publishing: 140] [Article Influence: 42.7] [Reference Citation Analysis]
203 Maier D, Laubender E, Basavanna A, Schumann S, Güder F, Urban GA, Dincer C. Toward Continuous Monitoring of Breath Biochemistry: A Paper-Based Wearable Sensor for Real-Time Hydrogen Peroxide Measurement in Simulated Breath. ACS Sens 2019;4:2945-51. [PMID: 31610653 DOI: 10.1021/acssensors.9b01403] [Cited by in Crossref: 65] [Cited by in F6Publishing: 39] [Article Influence: 21.7] [Reference Citation Analysis]
204 Kasuga T, Yagyu H, Uetani K, Koga H, Nogi M. "Return to the Soil" Nanopaper Sensor Device for Hyperdense Sensor Networks. ACS Appl Mater Interfaces 2019;11:43488-93. [PMID: 31659891 DOI: 10.1021/acsami.9b13886] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.7] [Reference Citation Analysis]
205 Tu J, Torrente‐rodríguez RM, Wang M, Gao W. The Era of Digital Health: A Review of Portable and Wearable Affinity Biosensors. Adv Funct Mater 2020;30:1906713. [DOI: 10.1002/adfm.201906713] [Cited by in Crossref: 88] [Cited by in F6Publishing: 71] [Article Influence: 29.3] [Reference Citation Analysis]
206 Pavagada S, Channon RB, Chang JYH, Kim SH, MacIntyre D, Bennett PR, Terzidou V, Ladame S. Oligonucleotide-templated lateral flow assays for amplification-free sensing of circulating microRNAs. Chem Commun (Camb) 2019;55:12451-4. [PMID: 31556888 DOI: 10.1039/c9cc05607f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
207 Roselin AA, Anandhan N, Gopu G, Doss IJP, Ganesan KP, Selvam RP, Marimuthu T, Sivakumar G. Electrochemical sensor for the detection of lead ions of B-site-doped bismuth titanate perovskite thin film. Appl Phys A 2019;125. [DOI: 10.1007/s00339-019-2963-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
208 Vizzini P, Braidot M, Vidic J, Manzano M. Electrochemical and Optical Biosensors for the Detection of Campylobacter and Listeria: An Update Look. Micromachines (Basel) 2019;10:E500. [PMID: 31357655 DOI: 10.3390/mi10080500] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 6.7] [Reference Citation Analysis]
209 Bruch R, Urban GA, Dincer C. Unamplified gene sensing via Cas9 on graphene. Nat Biomed Eng 2019;3:419-20. [DOI: 10.1038/s41551-019-0413-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]