BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bonacchini GE, Bossio C, Greco F, Mattoli V, Kim YH, Lanzani G, Caironi M. Tattoo-Paper Transfer as a Versatile Platform for All-Printed Organic Edible Electronics. Adv Mater 2018;30:e1706091. [PMID: 29460421 DOI: 10.1002/adma.201706091] [Cited by in Crossref: 59] [Cited by in F6Publishing: 49] [Article Influence: 14.8] [Reference Citation Analysis]
Number Citing Articles
1 Angeli MAC, Cramer T, Fraboni B, Magagnin L, Gastaldi D, Vena P. Reliability of inkjet printed silver nanoparticle interconnects on deformable substrates tested through an electromechanical in-situ technique. MRS Communications 2019;9:129-36. [DOI: 10.1557/mrc.2019.10] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
2 Ferrari LM, Keller K, Burtscher B, Greco F. Temporary tattoo as unconventional substrate for conformable and transferable electronics on skin and beyond. Multifunct Mater 2020;3:032003. [DOI: 10.1088/2399-7532/aba6e3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
3 Worsley R, Pimpolari L, McManus D, Ge N, Ionescu R, Wittkopf JA, Alieva A, Basso G, Macucci M, Iannaccone G, Novoselov KS, Holder H, Fiori G, Casiraghi C. All-2D Material Inkjet-Printed Capacitors: Toward Fully Printed Integrated Circuits. ACS Nano 2019;13:54-60. [PMID: 30452230 DOI: 10.1021/acsnano.8b06464] [Cited by in Crossref: 62] [Cited by in F6Publishing: 45] [Article Influence: 20.7] [Reference Citation Analysis]
4 Burtscher B, Leising G, Greco F. Temporary Tattoo Approach for a Transferable Printed Organic Photodiode. ACS Appl Electron Mater 2021;3:2652-60. [DOI: 10.1021/acsaelm.1c00249] [Reference Citation Analysis]
5 Fang P, Wu F, Sheu H, Lai J, Cheng H, Chou W. Analysis of ultrathin organic inverters by using in situ grazing incidence X-ray diffraction under high bending times and low voltage. Organic Electronics 2021;88:106002. [DOI: 10.1016/j.orgel.2020.106002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Wu P, Wang Z, Yao X, Fu J, He Y. Recyclable conductive nanoclay for direct in situ printing flexible electronics. Mater Horiz 2021;8:2006-17. [PMID: 34846477 DOI: 10.1039/d0mh02065f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
7 Bettinger CJ. Advances in Materials and Structures for Ingestible Electromechanical Medical Devices. Angew Chem Int Ed Engl 2018;57:16946-58. [PMID: 29999578 DOI: 10.1002/anie.201806470] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
8 Chiong JA, Tran H, Lin Y, Zheng Y, Bao Z. Integrating Emerging Polymer Chemistries for the Advancement of Recyclable, Biodegradable, and Biocompatible Electronics. Adv Sci (Weinh) 2021;8:e2101233. [PMID: 34014619 DOI: 10.1002/advs.202101233] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
9 Sahin F, Pekdemir S, Sakir M, Gozutok Z, Onses MS. Transferrable SERS Barcodes. Adv Materials Inter 2022;9:2200048. [DOI: 10.1002/admi.202200048] [Reference Citation Analysis]
10 Taccola S, Poliziani A, Santonocito D, Mondini A, Denk C, Ide AN, Oberparleiter M, Greco F, Mattoli V. Toward the Use of Temporary Tattoo Electrodes for Impedancemetric Respiration Monitoring and Other Electrophysiological Recordings on Skin. Sensors (Basel) 2021;21:1197. [PMID: 33567724 DOI: 10.3390/s21041197] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
11 Park S, Yu SH, Kim J, Kang M, Sim KM, Chung DS. Iodine-mediated non-destructive multilayer stacking of polymer semiconductors for near-infrared-selective photodiode. Organic Electronics 2019;68:63-9. [DOI: 10.1016/j.orgel.2019.02.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Han WB, Lee JH, Shin JW, Hwang SW. Advanced Materials and Systems for Biodegradable, Transient Electronics. Adv Mater 2020;32:e2002211. [PMID: 32974973 DOI: 10.1002/adma.202002211] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 15.0] [Reference Citation Analysis]
13 Cataldi P, Lamanna L, Bertei C, Arena F, Rossi P, Liu M, Di Fonzo F, Papageorgiou DG, Luzio A, Caironi M. An Electrically Conductive Oleogel Paste for Edible Electronics. Adv Funct Materials 2022;32:2113417. [DOI: 10.1002/adfm.202113417] [Reference Citation Analysis]
14 Rich SI, Jiang Z, Fukuda K, Someya T. Well-rounded devices: the fabrication of electronics on curved surfaces - a review. Mater Horiz 2021;8:1926-58. [PMID: 34846471 DOI: 10.1039/d1mh00143d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Darabi S, Hummel M, Rantasalo S, Rissanen M, Öberg Månsson I, Hilke H, Hwang B, Skrifvars M, Hamedi MM, Sixta H, Lund A, Müller C. Green Conducting Cellulose Yarns for Machine-Sewn Electronic Textiles. ACS Appl Mater Interfaces 2020;12:56403-12. [PMID: 33284024 DOI: 10.1021/acsami.0c15399] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
16 Sizov AS, Trul AA, Chekusova V, Borshchev OV, Vasiliev AA, Agina EV, Ponomarenko SA. Highly Sensitive Air-Stable Easily Processable Gas Sensors Based on Langmuir–Schaefer Monolayer Organic Field-Effect Transistors for Multiparametric H 2 S and NH 3 Real-Time Detection. ACS Appl Mater Interfaces 2018;10:43831-41. [DOI: 10.1021/acsami.8b15427] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
17 Fan H, Li H, Han J, McKeever N, Yu J, Katz HE. A Humid-Air-Operable, NO2-Responsive Polymer Transistor Series Circuit with Improved Signal-to-Drift Ratio Based on Polymer Semiconductor Oxidation. ACS Sens 2019;4:3240-7. [PMID: 31777244 DOI: 10.1021/acssensors.9b01751] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
18 Lv Z, Li W, Yang L, Loh XJ, Chen X. Custom-Made Electrochemical Energy Storage Devices. ACS Energy Lett 2019;4:606-14. [DOI: 10.1021/acsenergylett.8b02408] [Cited by in Crossref: 68] [Cited by in F6Publishing: 49] [Article Influence: 22.7] [Reference Citation Analysis]
19 Barsotti J, Rapidis AG, Hirata I, Greco F, Cacialli F, Mattoli V. Ultrathin, Ultra‐Conformable, and Free‐Standing Tattooable Organic Light‐Emitting Diodes. Adv Electron Mater 2021;7:2001145. [DOI: 10.1002/aelm.202001145] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
20 Han WB, Ko G, Shin J, Hwang S. Advanced manufacturing for transient electronics. MRS Bull 2020;45:113-20. [DOI: 10.1557/mrs.2020.22] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
21 Tang RH, Liu LN, Zhang SF, He XC, Li XJ, Xu F, Ni YH, Li F. A review on advances in methods for modification of paper supports for use in point-of-care testing. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3626-z] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 10.0] [Reference Citation Analysis]
22 Beardslee LA, Banis GE, Chu S, Liu S, Chapin AA, Stine JM, Pasricha PJ, Ghodssi R. Ingestible Sensors and Sensing Systems for Minimally Invasive Diagnosis and Monitoring: The Next Frontier in Minimally Invasive Screening. ACS Sens 2020;5:891-910. [PMID: 32157868 DOI: 10.1021/acssensors.9b02263] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 15.5] [Reference Citation Analysis]
23 Girão AF, Serrano MC, Completo A, Marques PAAP. Do biomedical engineers dream of graphene sheets? Biomater Sci 2019;7:1228-39. [PMID: 30720810 DOI: 10.1039/c8bm01636d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
24 Perinot A, Caironi M. Accessing MHz Operation at 2 V with Field-Effect Transistors Based on Printed Polymers on Plastic. Adv Sci (Weinh) 2019;6:1801566. [PMID: 30828529 DOI: 10.1002/advs.201801566] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
25 Fang Z, Zhang H, Qiu S, Kuang Y, Zhou J, Lan Y, Sun C, Li G, Gong S, Ma Z. Versatile Wood Cellulose for Biodegradable Electronics. Adv Mater Technol 2021;6:2000928. [DOI: 10.1002/admt.202000928] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
26 Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020;49:4405-65. [DOI: 10.1039/c9cs00587k] [Cited by in Crossref: 59] [Cited by in F6Publishing: 8] [Article Influence: 29.5] [Reference Citation Analysis]
27 Chen Z, Gao N, Chu Y, He Y, Wang Y. Ionic Network Based on Dynamic Ionic Liquids for Electronic Tattoo Application. ACS Appl Mater Interfaces 2021;13:33557-65. [PMID: 34250798 DOI: 10.1021/acsami.1c09278] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Mota-morales JD, Morales-narváez E. Transforming nature into the next generation of bio-based flexible devices: New avenues using deep eutectic systems. Matter 2021;4:2141-62. [DOI: 10.1016/j.matt.2021.05.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
29 Fukada K, Tajima T, Seyama M. Thermoresponsive Gelatin/Chitosan Hydrogel Films for a Degradable Capacitor. ACS Appl Mater Interfaces 2021;13:59006-11. [PMID: 34817996 DOI: 10.1021/acsami.1c14905] [Reference Citation Analysis]
30 Zhang Y, Zhang T, Huang Z, Yang J. A New Class of Electronic Devices Based on Flexible Porous Substrates. Adv Sci (Weinh) 2022;9:e2105084. [PMID: 35038244 DOI: 10.1002/advs.202105084] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
31 Yang Y, Sun H, Zhao X, Xian D, Han X, Wang B, Wang S, Zhang M, Zhang C, Ye X, Ni Y, Tong Y, Tang Q, Liu Y. High-Mobility Fungus-Triggered Biodegradable Ultraflexible Organic Transistors. Adv Sci (Weinh) 2022;9:e2105125. [PMID: 35257518 DOI: 10.1002/advs.202105125] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Wu Y, Ye D, Shan Y, He S, Su Z, Liang J, Zheng J, Yang Z, Yang H, Xu W, Jiang H. Edible and Nutritive Electronics: Materials, Fabrications, Components, and Applications. Adv Mater Technol 2020;5:2000100. [DOI: 10.1002/admt.202000100] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
33 Khandelwal G, Minocha T, Yadav SK, Chandrasekhar A, Maria Joseph Raj NP, Gupta SC, Kim S. All edible materials derived biocompatible and biodegradable triboelectric nanogenerator. Nano Energy 2019;65:104016. [DOI: 10.1016/j.nanoen.2019.104016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 13] [Article Influence: 10.3] [Reference Citation Analysis]
34 Sharova AS, Caironi M. Sweet Electronics: Honey-Gated Complementary Organic Transistors and Circuits Operating in Air. Adv Mater 2021;33:e2103183. [PMID: 34418204 DOI: 10.1002/adma.202103183] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
35 Sharova AS, Melloni F, Lanzani G, Bettinger CJ, Caironi M. Edible Electronics: The Vision and the Challenge. Adv Mater Technol 2021;6:2000757. [DOI: 10.1002/admt.202000757] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 10.5] [Reference Citation Analysis]
36 Cunha I, Martins J, Bahubalindruni PG, Carvalho JT, Rodrigues J, Rubin S, Fortunato E, Martins R, Pereira L. Handwritten and Sustainable Electronic Logic Circuits with Fully Printed Paper Transistors. Adv Materials Technologies 2021;6:2100633. [DOI: 10.1002/admt.202100633] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
37 Dincer C, Bruch R, Costa-Rama E, Fernández-Abedul MT, Merkoçi A, Manz A, Urban GA, Güder F. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Adv Mater 2019;31:e1806739. [PMID: 31094032 DOI: 10.1002/adma.201806739] [Cited by in Crossref: 226] [Cited by in F6Publishing: 165] [Article Influence: 75.3] [Reference Citation Analysis]
38 Barsotti J, Hirata I, Pignatelli F, Caironi M, Greco F, Mattoli V. Ultraconformable Freestanding Capacitors Based on Ultrathin Polyvinyl Formal Films. Adv Electron Mater 2018;4:1800215. [DOI: 10.1002/aelm.201800215] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
39 Khandelwal G, Joseph Raj NPM, Alluri NR, Kim S. Enhancing Hydrophobicity of Starch for Biodegradable Material-Based Triboelectric Nanogenerators. ACS Sustainable Chem Eng 2021;9:9011-7. [DOI: 10.1021/acssuschemeng.1c01853] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
40 He X, Pei Q, Xu T, Zhang X. Smartphone-based tape sensors for multiplexed rapid urinalysis. Sensors and Actuators B: Chemical 2020;304:127415. [DOI: 10.1016/j.snb.2019.127415] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
41 Chen Z, Gui Q, Wang Y. Dynamic chemistry in ionic liquid-based conductor. Green Chemical Engineering 2021;2:346-58. [DOI: 10.1016/j.gce.2021.07.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Yao Z, Coatsworth P, Shi X, Zhi J, Hu L, Yan R, Güder F, Yu H. Paper-based sensors for diagnostics, human activity monitoring, food safety and environmental detection. Sens Diagn 2022;1:312-42. [DOI: 10.1039/d2sd00017b] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Williams NX, Noyce S, Cardenas JA, Catenacci M, Wiley BJ, Franklin AD. Silver nanowire inks for direct-write electronic tattoo applications. Nanoscale 2019;11:14294-302. [PMID: 31318368 DOI: 10.1039/c9nr03378e] [Cited by in Crossref: 28] [Cited by in F6Publishing: 7] [Article Influence: 14.0] [Reference Citation Analysis]
44 Unger K, Greco F, Coclite AM. Temporary Tattoo pH Sensor with pH‐Responsive Hydrogel via Initiated Chemical Vapor Deposition. Adv Materials Technologies 2022;7:2100717. [DOI: 10.1002/admt.202100717] [Reference Citation Analysis]
45 Stojanović G, Pojić M, Kojić S, Mišan A, Vasiljević D. Mechanical properties of edible biofilm as a substrate for printed electronics. Appl Phys A 2019;125. [DOI: 10.1007/s00339-019-2881-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
46 Passarella B, Scaccabarozzi AD, Giorgio M, Perinot A, Marina Barbier S, Martìn J, Caironi M. Direct-writing of organic field-effect transistors on plastic achieving 22 MHz transition frequency. Flex Print Electron 2020;5:034001. [DOI: 10.1088/2058-8585/aba3af] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Dore C, Dörling B, Garcia-Pomar JL, Campoy-Quiles M, Mihi A. Hydroxypropyl Cellulose Adhesives for Transfer Printing of Carbon Nanotubes and Metallic Nanostructures. Small 2020;16:e2004795. [PMID: 33135371 DOI: 10.1002/smll.202004795] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Yamagishi K, Takeoka S, Fujie T. Printed nanofilms mechanically conforming to living bodies. Biomater Sci 2019;7:520-31. [PMID: 30648703 DOI: 10.1039/c8bm01290c] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
49 Zhu B, Gong S, Lin F, Wang Y, Ling Y, An T, Cheng W. Patterning Vertically Grown Gold Nanowire Electrodes for Intrinsically Stretchable Organic Transistors. Adv Electron Mater 2019;5:1800509. [DOI: 10.1002/aelm.201800509] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 7.5] [Reference Citation Analysis]
50 Miao J, Liu H, Li Y, Zhang X. Biodegradable Transparent Substrate Based on Edible Starch-Chitosan Embedded with Nature-Inspired Three-Dimensionally Interconnected Conductive Nanocomposites for Wearable Green Electronics. ACS Appl Mater Interfaces 2018;10:23037-47. [PMID: 29905073 DOI: 10.1021/acsami.8b04291] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
51 Raghuwanshi V, Bharti D, Mahato AK, Varun I, Tiwari SP. Solution-Processed Organic Field-Effect Transistors with High Performance and Stability on Paper Substrates. ACS Appl Mater Interfaces 2019;11:8357-64. [DOI: 10.1021/acsami.8b21404] [Cited by in Crossref: 20] [Cited by in F6Publishing: 4] [Article Influence: 6.7] [Reference Citation Analysis]
52 Steiger C, Abramson A, Nadeau P, Chandrakasan AP, Langer R, Traverso G. Ingestible electronics for diagnostics and therapy. Nat Rev Mater 2019;4:83-98. [DOI: 10.1038/s41578-018-0070-3] [Cited by in Crossref: 55] [Cited by in F6Publishing: 23] [Article Influence: 13.8] [Reference Citation Analysis]
53 Torricelli F, Alessandri I, Macchia E, Vassalini I, Maddaloni M, Torsi L. Green Materials and Technologies for Sustainable Organic Transistors. Adv Materials Technologies 2022;7:2100445. [DOI: 10.1002/admt.202100445] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]