BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lorkowski ME, Atukorale PU, Ghaghada KB, Karathanasis E. Stimuli-Responsive Iron Oxide Nanotheranostics: A Versatile and Powerful Approach for Cancer Therapy. Adv Healthc Mater 2021;10:e2001044. [PMID: 33225633 DOI: 10.1002/adhm.202001044] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Hosseinkazemi H, Samani S, O’neill A, Soezi M, Moghoofei M, Azhdari MH, Aavani F, Nazbar A, Keshel SH, Doroudian M, Shi D. Applications of Iron Oxide Nanoparticles against Breast Cancer. Journal of Nanomaterials 2022;2022:1-12. [DOI: 10.1155/2022/6493458] [Reference Citation Analysis]
2 Mundekkad D, Cho WC. Nanoparticles in Clinical Translation for Cancer Therapy. Int J Mol Sci 2022;23:1685. [PMID: 35163607 DOI: 10.3390/ijms23031685] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
3 Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Alexandrovskaya Y, Pavley Y, Grigoriev Y, Grebenev V, Shatalova T, Obrezkova M. Thermal behavior of magnetite nanoparticles with various coatings in the range 30–1000 °C. Thermochimica Acta 2022;708:179120. [DOI: 10.1016/j.tca.2021.179120] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zoulikha M, He W. Targeted Drug Delivery for Chronic Lymphocytic Leukemia. Pharm Res. [DOI: 10.1007/s11095-022-03214-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Tabish TA, Narayan RJ. Mitochondria-targeted graphene for advanced cancer therapeutics. Acta Biomater 2021;129:43-56. [PMID: 33965624 DOI: 10.1016/j.actbio.2021.04.054] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 18.0] [Reference Citation Analysis]
7 Kouzoudis D, Samourgkanidis G, Kolokithas-ntoukas A, Zoppellaro G, Spiliotopoulos K. Magnetic Hyperthermia in the 400–1,100 kHz Frequency Range Using MIONs of Condensed Colloidal Nanocrystal Clusters. Front Mater 2021;8:638019. [DOI: 10.3389/fmats.2021.638019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
8 Chander N, Morstein J, Bolten JS, Shemet A, Cullis PR, Trauner D, Witzigmann D. Optimized Photoactivatable Lipid Nanoparticles Enable Red Light Triggered Drug Release. Small 2021;17:e2008198. [PMID: 33880882 DOI: 10.1002/smll.202008198] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Covarrubias G, Lorkowski ME, Sims HM, Loutrianakis G, Rahmy A, Cha A, Abenojar E, Wickramasinghe S, Moon TJ, Samia ACS, Karathanasis E. Hyperthermia-mediated changes in the tumor immune microenvironment using iron oxide nanoparticles. Nanoscale Adv 2021;3:5890-9. [PMID: 34746645 DOI: 10.1039/d1na00116g] [Reference Citation Analysis]