BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Makvandi P, Wang C, Zare EN, Borzacchiello A, Niu L, Tay FR. Metal‐Based Nanomaterials in Biomedical Applications: Antimicrobial Activity and Cytotoxicity Aspects. Adv Funct Mater 2020;30:1910021. [DOI: 10.1002/adfm.201910021] [Cited by in Crossref: 239] [Cited by in F6Publishing: 241] [Article Influence: 79.7] [Reference Citation Analysis]
Number Citing Articles
1 Słoma M. 3D printed electronics with nanomaterials. Nanoscale 2023;15:5623-48. [PMID: 36880539 DOI: 10.1039/d2nr06771d] [Reference Citation Analysis]
2 Zhang L, Hu C, Sun M, Ding X, Cheng HB, Duan S, Xu FJ. BODIPY-Functionalized Natural Polymer Coatings for Multimodal Therapy of Drug-Resistant Bacterial Infection. Adv Sci (Weinh) 2023;:e2300328. [PMID: 36935367 DOI: 10.1002/advs.202300328] [Reference Citation Analysis]
3 Meng X, Xiong H, Ji F, Gao X, Han L, Wu Z, Jia L, Ren J. Facile surface treatment strategy to generate dense lysozyme layer on ultra-high molecular weight polyethylene enabling inhibition of bacterial biofilm formation. Colloids Surf B Biointerfaces 2023;225:113243. [PMID: 36893665 DOI: 10.1016/j.colsurfb.2023.113243] [Reference Citation Analysis]
4 Saied E, Mekky AE, Al-askar AA, Hagag AF, El-bana AA, Ashraf M, Walid A, Nour T, Fawzi MM, Arishi AA, Hashem AH. Aspergillus terreus-Mediated Selenium Nanoparticles and Their Antimicrobial and Photocatalytic Activities. Crystals 2023;13:450. [DOI: 10.3390/cryst13030450] [Reference Citation Analysis]
5 Khan A, Priyadarshi R, Bhattacharya T, Rhim J. Carrageenan/Alginate-Based Functional Films Incorporated with Allium sativum Carbon Dots for UV-Barrier Food Packaging. Food Bioprocess Technol 2023. [DOI: 10.1007/s11947-023-03048-7] [Reference Citation Analysis]
6 Ma X, Zhu X, Mu Y, Gao C, He W, Ran M, Cai L, Fan G, Ma G, Sun X. Fabrication of polydopamine reduced CuO nanoparticle-alginate composite nanogels for management of Pseudomonas synringae pv. tabaci in tobacco. Pest Manag Sci 2023;79:1213-24. [PMID: 36414610 DOI: 10.1002/ps.7298] [Reference Citation Analysis]
7 Leong CY, Wahab RA, Lee SL, Ponnusamy VK, Chen YH. Current perspectives of metal-based nanomaterials as photocatalytic antimicrobial agents and their therapeutic modes of action: A review. Environ Res 2023;:115578. [PMID: 36848977 DOI: 10.1016/j.envres.2023.115578] [Reference Citation Analysis]
8 Makvandi P, Song H, Yiu CKY, Sartorius R, Zare EN, Rabiee N, Wu WX, Paiva-Santos AC, Wang XD, Yu CZ, Tay FR. Bioengineered materials with selective antimicrobial toxicity in biomedicine. Mil Med Res 2023;10:8. [PMID: 36829246 DOI: 10.1186/s40779-023-00443-1] [Reference Citation Analysis]
9 Nguyen HT, Pham TN, Le LT, Nguyen TK, Le AT, Huy TQ, Thu Nguyen TT. Complexes of Ag and ZnO nanoparticles with BBR for enhancement of gastrointestinal antibacterial activity through the impacts of size and composition. RSC Adv 2023;13:6027-37. [PMID: 36814876 DOI: 10.1039/d3ra00053b] [Reference Citation Analysis]
10 Shao M, Bigham A, Yousefiasl S, Yiu CKY, Girish YR, Ghomi M, Sharifi E, Sezen S, Nazarzadeh Zare E, Zarrabi A, Rabiee N, Paiva-Santos AC, Del Turco S, Guo B, Wang X, Mattoli V, Wu A. Recapitulating Antioxidant and Antibacterial Compounds into a Package for Tissue Regeneration: Dual Function Materials with Synergistic Effect. Small 2023;:e2207057. [PMID: 36775954 DOI: 10.1002/smll.202207057] [Reference Citation Analysis]
11 El-Moslamy SH, Yahia IS, Zahran HY, Kamoun EA. Novel biosynthesis of MnO NPs using Mycoendophyte: industrial bioprocessing strategies and scaling-up production with its evaluation as anti-phytopathogenic agents. Sci Rep 2023;13:2052. [PMID: 36739323 DOI: 10.1038/s41598-023-28749-z] [Reference Citation Analysis]
12 Cao W, Zhou X, Tu C, Wang Z, Liu X, Kang Y, Wang J, Deng L, Zhou T, Gao C. A broad-spectrum antibacterial and tough hydrogel dressing accelerates healing of infected wound in vivo. Biomater Adv 2023;145:213244. [PMID: 36549150 DOI: 10.1016/j.bioadv.2022.213244] [Reference Citation Analysis]
13 Liu T, Lu Y, Zhan R, Qian W, Luo G. Nanomaterials and nanomaterials-based drug delivery to promote cutaneous wound healing. Adv Drug Deliv Rev 2023;193:114670. [PMID: 36538990 DOI: 10.1016/j.addr.2022.114670] [Reference Citation Analysis]
14 Wang X, Zhang M, Zhu T, Wei Q, Liu G, Ding J. Flourishing Antibacterial Strategies for Osteomyelitis Therapy. Adv Sci (Weinh) 2023;:e2206154. [PMID: 36717275 DOI: 10.1002/advs.202206154] [Reference Citation Analysis]
15 Mehrabi MR, Soltani M, Chiani M, Raahemifar K, Farhangi A. Nanomedicine: New Frontiers in Fighting Microbial Infections. Nanomaterials (Basel) 2023;13. [PMID: 36770443 DOI: 10.3390/nano13030483] [Reference Citation Analysis]
16 Zhuang J, Yu Y, Lu R. Mesoporous silica nanoparticles as carrier to overcome bacterial drug resistant barriers. Int J Pharm 2023;631:122529. [PMID: 36563796 DOI: 10.1016/j.ijpharm.2022.122529] [Reference Citation Analysis]
17 Chen J, Fu W, Jiang FL, Liu Y, Jiang P. Recent advances in 2D metal carbides and nitrides (MXenes): synthesis and biological application. J Mater Chem B 2023;11:702-15. [PMID: 36545792 DOI: 10.1039/d2tb01503j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Fu J, Liu T, Binte Touhid SS, Fu F, Liu X. Functional Textile Materials for Blocking COVID-19 Transmission. ACS Nano 2023;17:1739-63. [PMID: 36683285 DOI: 10.1021/acsnano.2c08894] [Reference Citation Analysis]
19 Lim QF, Yap RCC, Teng CP, Yeo JCC, Tan MY, Toh JPW, Zhu Q, Thitsartarn W, He C, Liu S, Kong J. Electrospray-on-Electrospun Breathable, Biodegradable, and Robust Nanofibrous Membranes with Photocatalytic Bactericidal Activity. ACS Appl Nano Mater 2023. [DOI: 10.1021/acsanm.2c04776] [Reference Citation Analysis]
20 Hossain SI, Bajrami D, Sportelli MC, Picca RA, Volpe A, Gaudiuso C, Ancona A, Gentile L, Palazzo G, Ditaranto N, Mizaikoff B, Cioffi N. Preparation of Laser-Ablated Ag Nanoparticle-MMT Clay-Based Beeswax Antibiofilm Coating. Antibiotics (Basel) 2023;12. [PMID: 36830105 DOI: 10.3390/antibiotics12020194] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Khan E, Khan S, Khan A. Polymer nanocomposites for biomedical applications. Smart Polymer Nanocomposites 2023. [DOI: 10.1016/b978-0-323-91611-0.00025-6] [Reference Citation Analysis]
22 Karthik C, Rajalakshmi S, Thomas S, Thomas V. Intelligent Polymeric Biomaterials Surface Driven by Plasma Processing. Current Opinion in Biomedical Engineering 2023. [DOI: 10.1016/j.cobme.2022.100440] [Reference Citation Analysis]
23 Jeevanandam J, Danquah MK. Phytosynthesized nanoparticles for antimicrobial treatment. Emerging Phytosynthesized Nanomaterials for Biomedical Applications 2023. [DOI: 10.1016/b978-0-12-824373-2.00003-9] [Reference Citation Analysis]
24 Wei S, Nain A, Lin Y, Wu R, Srivastava P, Chang L, Huang Y, Chang H, Chuang K, Huang C. Light triggered programmable states of carbon dot liposomes accelerate chronic wound healing via photocatalytic cascade reaction. Carbon 2023;201:952-961. [DOI: 10.1016/j.carbon.2022.10.008] [Reference Citation Analysis]
25 Yu HH, Chen Y, Su H, Chen L, Chen H, Lin KA, Lin C. Comparative pulmonary toxicity assessment of tungsten trioxide and tungsten trioxide hydrate nanoparticles. Science of The Total Environment 2023;855:158885. [DOI: 10.1016/j.scitotenv.2022.158885] [Reference Citation Analysis]
26 Kumari P, Kumar A. Working principles of various smart coatings on microbes/virus growth. Antiviral and Antimicrobial Smart Coatings 2023. [DOI: 10.1016/b978-0-323-99291-6.00003-7] [Reference Citation Analysis]
27 Mutalik C, Lin IH, Krisnawati DI, Khaerunnisa S, Khafid M, Widodo, Hsiao YC, Kuo TR. Antibacterial Pathways in Transition Metal-Based Nanocomposites: A Mechanistic Overview. Int J Nanomedicine 2022;17:6821-42. [PMID: 36605560 DOI: 10.2147/IJN.S392081] [Reference Citation Analysis]
28 Pacho MO, Deeney D, Johnson EA, Bravo BN, Patel K, Latta MA, Belshan MA, Gross SM. Characterization of Ag-Ion Releasing Zeolite Filled 3D Printed Resins. J Funct Biomater 2022;14. [PMID: 36662054 DOI: 10.3390/jfb14010007] [Reference Citation Analysis]
29 Figueiredo AS, Ferraria AM, Botelho do Rego AM, Monteiro S, Santos R, Minhalma M, Sánchez-Loredo MG, Tovar-Tovar RL, de Pinho MN. Bactericide Activity of Cellulose Acetate/Silver Nanoparticles Asymmetric Membranes: Surfaces and Porous Structures Role. Membranes (Basel) 2022;13:4. [PMID: 36676811 DOI: 10.3390/membranes13010004] [Reference Citation Analysis]
30 Zhao W, Yue C, Liu L, Liu Y, Leng J. Research Progress of Shape Memory Polymer and 4D Printing in Biomedical Application. Adv Healthc Mater 2022;:e2201975. [PMID: 36520058 DOI: 10.1002/adhm.202201975] [Reference Citation Analysis]
31 Zhong J, Yang X, Gao S, Luo J, Xiang J, Li G, Liang Y, Tang L, Qian C, Zhou J, Zheng L, Zhang K, Zhao J. Geometric and Electronic Structure‐Matched Superoxide Dismutase‐Like and Catalase‐Like Sequential Single‐Atom Nanozymes for Osteoarthritis Recession. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202209399] [Reference Citation Analysis]
32 Park DH, Choi MY, Choi JH. Recent Development in Plasmonic Nanobiosensors for Viral DNA/RNA Biomarkers. Biosensors (Basel) 2022;12. [PMID: 36551088 DOI: 10.3390/bios12121121] [Reference Citation Analysis]
33 Zhai M, Zhou J, Hu Z, Innocent MT, Wang R, Jia C, Xiang H, Zhu M. Effective antibacterial and phase change PEG/Cu2O@A-HNTs composites for melt-spun difunctional PA6 fiber. Progress in Natural Science: Materials International 2022. [DOI: 10.1016/j.pnsc.2022.11.003] [Reference Citation Analysis]
34 Zhai X, Liu N, Ju P, Jiang Q, Liu X, Guan F, Ren Y, Duan J, Hou B. Novel BiPO4-Zn electrodeposited coatings with highly enhanced photocatalytic antibacterial activities controlled by ultrasound and EDTA-2Na. Journal of Alloys and Compounds 2022. [DOI: 10.1016/j.jallcom.2022.168338] [Reference Citation Analysis]
35 Zhu L, Tong X, Ye Z, Lin Z, Zhou T, Huang S, Li Y, Lin J, Wen C, Ma J. Zinc phosphate, zinc oxide, and their dual-phase coatings on pure Zn foam with good corrosion resistance, cytocompatibility, and antibacterial ability for potential biodegradable bone-implant applications. Chemical Engineering Journal 2022;450:137946. [DOI: 10.1016/j.cej.2022.137946] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Ye Y, He J, Wang H, Li W, Wang Q, Luo C, Tang X, Chen X, Jin X, Yao K, Zhou M. Cell Wall Destruction and Internal Cascade Synergistic Antifungal Strategy for Fungal Keratitis. ACS Nano 2022;16:18729-45. [PMID: 36278973 DOI: 10.1021/acsnano.2c07444] [Reference Citation Analysis]
37 Huang J, Lin S, Bai X, Li W, Zhang R, Miao C, Zhang X, Huang Z, Chen M, Weng S. Decorated Polyetheretherketone Implants with Antibacterial and Antioxidative Effects through Layer-by-Layer Nanoarchitectonics Facilitate Diabetic Bone Integration with Infection. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c11574] [Reference Citation Analysis]
38 Haidari H, Vasilev K, Cowin AJ, Kopecki Z. Bacteria-Activated Dual pH- and Temperature-Responsive Hydrogel for Targeted Elimination of Infection and Improved Wound Healing. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c15659] [Reference Citation Analysis]
39 Mercan DA, Niculescu AG, Grumezescu AM. Nanoparticles for Antimicrobial Agents Delivery-An Up-to-Date Review. Int J Mol Sci 2022;23. [PMID: 36430343 DOI: 10.3390/ijms232213862] [Reference Citation Analysis]
40 Fiaschini N, Giuliani C, Vitali R, Tammaro L, Valerini D, Rinaldi A. Design and Manufacturing of Antibacterial Electrospun Polysulfone Membranes Functionalized by Ag Nanocoating via Magnetron Sputtering. Nanomaterials (Basel) 2022;12. [PMID: 36432247 DOI: 10.3390/nano12223962] [Reference Citation Analysis]
41 Laha S, Rajput A, Laha SS, Jadhav R. A Concise and Systematic Review on Non-Invasive Glucose Monitoring for Potential Diabetes Management. Biosensors 2022;12:965. [DOI: 10.3390/bios12110965] [Reference Citation Analysis]
42 Zhong C, Wu Y, Lin H, Liu R. Advances in the antimicrobial treatment of osteomyelitis. Composites Part B: Engineering 2022. [DOI: 10.1016/j.compositesb.2022.110428] [Reference Citation Analysis]
43 Cao S, Li D, Uliana AA, Jiang Y, Zhu J, Zhang Y, Van der Bruggen B. Multifunctional Covalent Organic Framework Membranes with an Ultrathin Recycled Palladium Nanolayer for Efficient Water Decontamination. Applied Catalysis B: Environmental 2022. [DOI: 10.1016/j.apcatb.2022.122175] [Reference Citation Analysis]
44 Liao G, Zhang L, Li C, Liu S, Fang B, Yang H. Emerging carbon-supported single-atom catalysts for biomedical applications. Matter 2022;5:3341-3374. [DOI: 10.1016/j.matt.2022.07.031] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Tschiche HR, Bierkandt FS, Creutzenberg O, Fessard V, Franz R, Greiner R, Gruber-Traub C, Haas KH, Haase A, Hartwig A, Hesse B, Hund-Rinke K, Iden P, Kromer C, Loeschner K, Mutz D, Rakow A, Rasmussen K, Rauscher H, Richter H, Schoon J, Schmid O, Som C, Spindler LM, Tovar GEM, Westerhoff P, Wohlleben W, Luch A, Laux P. Analytical and toxicological aspects of nanomaterials in different product groups: Challenges and opportunities. NanoImpact 2022;28:100416. [PMID: 35995388 DOI: 10.1016/j.impact.2022.100416] [Reference Citation Analysis]
46 Abohamzeh E, Sheikholeslami M, Shafee A. Toxicity of Nanomaterials. Nanomaterials and Nanotechnology in Medicine 2022. [DOI: 10.1002/9781119558026.ch17] [Reference Citation Analysis]
47 Guo N, Tian J, Wang L, Sun K, Mi L, Ming H, Zhe Z, Sun F. Discussion on the possibility of multi-layer intelligent technologies to achieve the best recover of musculoskeletal injuries: Smart materials, variable structures, and intelligent therapeutic planning. Front Bioeng Biotechnol 2022;10:1016598. [DOI: 10.3389/fbioe.2022.1016598] [Reference Citation Analysis]
48 Shafique L, Aqib AI, Liang Q, Qin C, Ali MM, Adil M, Sarwar Z, Saleem A, Ajmal M, Khan A, Pan H, Cui K, Liu Q, Khan FA. Genomic and Therapeutic Analyses of Staphylococcus aureus Isolated from Cattle Reproductive Tract. BioMed Research International 2022;2022:1-14. [DOI: 10.1155/2022/6240711] [Reference Citation Analysis]
49 Fang Y, Wang Q, Yang Z, Yang W, Wang L, Ma J, Fu Y. An efficient approach to endow TiNbTaZr implant with osteogenic differentiation and antibacterial activity in vitro. Materials & Design 2022;221:110987. [DOI: 10.1016/j.matdes.2022.110987] [Reference Citation Analysis]
50 Song H, Zhang M, Tong W. Single-Atom Nanozymes: Fabrication, Characterization, Surface Modification and Applications of ROS Scavenging and Antibacterial. Molecules 2022;27:5426. [DOI: 10.3390/molecules27175426] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
51 Liu Y, Xu Z, Qiao M, Cai H, Zhu Z. Metal-based nano-delivery platform for treating bone disease and regeneration. Front Chem 2022;10:955993. [DOI: 10.3389/fchem.2022.955993] [Reference Citation Analysis]
52 Rajkumar M, Bhukya SN, Ahalya N, Elumalai G, Sivanandam K, Almutairi KMA, Alonazi WB, Soma SR, Urugo MM, Teekaraman Y. Impact of ANN in Revealing of Viral Peptides. BioMed Research International 2022;2022:1-8. [DOI: 10.1155/2022/7760734] [Reference Citation Analysis]
53 Chen F, Liu X, Ge X, Wang Y, Zhao Z, Zhang X, Chen G, Sun Y. Porous Polydroxyalkanoates (PHA) Scaffolds with Antibacterial Property for Oral Soft Tissue Regeneration. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.138899] [Reference Citation Analysis]
54 Kodithuwakku P, Jayasundara D, Munaweera I, Jayasinghe R, Thoradeniya T, Weerasekera M, Ajayan PM, Kottegoda N. A Review on Recent Developments in Structural Modification of TiO2 For Food Packaging Applications. Progress in Solid State Chemistry 2022. [DOI: 10.1016/j.progsolidstchem.2022.100369] [Reference Citation Analysis]
55 Soltani S, Akhbari K, Phuruangrat A. Improved Antibacterial Activity by Incorporation of Silver sulfadiazine on Nanoporous Cu-BTC Metal-Organic-Framework. Inorganica Chimica Acta 2022. [DOI: 10.1016/j.ica.2022.121182] [Reference Citation Analysis]
56 Fu S, Zhang Y, Yang Y, Liu X, Zhang X, Yang L, Xu D, Wang F, Qin G, Zhang E. An antibacterial mechanism of titanium alloy based on micro-area potential difference induced reactive oxygen species. Journal of Materials Science & Technology 2022;119:75-86. [DOI: 10.1016/j.jmst.2021.12.031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
57 Chiou YR, Lin CJ, Harroun SG, Chen YR, Chang L, Wu AT, Chang FC, Lin YW, Lin HJ, Anand A, Unnikrishnan B, Nain A, Huang CC. Aminoglycoside-mimicking carbonized polymer dots for bacteremia treatment. Nanoscale 2022. [PMID: 35913451 DOI: 10.1039/d2nr01959k] [Reference Citation Analysis]
58 Puttaraju T, Manjunatha M, Nagaraju G, Lingaraju K, Raja Naika H, Manjula M, Devaraja S. The Evaluation of Various Biological Properties for Bismuth Oxychloride Nanoparticles (BiOCl NPs). Inorganic Chemistry Communications 2022. [DOI: 10.1016/j.inoche.2022.109850] [Reference Citation Analysis]
59 Yassin MT, Mostafa AA, Al-askar AA, Al-otibi FO. Synergistic Antibacterial Activity of Green Synthesized Silver Nanomaterials with Colistin Antibiotic against Multidrug-Resistant Bacterial Pathogens. Crystals 2022;12:1057. [DOI: 10.3390/cryst12081057] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
60 Zhang S, Lin L, Huang X, Lu Y, Zheng D, Feng Y, Balan L. Antimicrobial Properties of Metal Nanoparticles and Their Oxide Materials and Their Applications in Oral Biology. Journal of Nanomaterials 2022;2022:1-18. [DOI: 10.1155/2022/2063265] [Reference Citation Analysis]
61 Beatriz Vilela Teixeira A, Greghi de Carvalho G, Cândido dos Reis A. Incorporation of antimicrobial agents into dental materials obtained by additive manufacturing: A literature review. The Saudi Dental Journal 2022. [DOI: 10.1016/j.sdentj.2022.05.007] [Reference Citation Analysis]
62 Guo G, Sun J, Wu Y, Wang J, Zou LY, Huang JJ, Ren KF, Liu CM, Wu ZL, Zheng Q, Qian J. Tough complex hydrogels transformed from highly swollen polyelectrolyte hydrogels based on Cu2+ coordination with anti-bacterial properties. J Mater Chem B 2022. [PMID: 35642602 DOI: 10.1039/d2tb00830k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Chen Y, Zhang M, Chen L, Pan M, Qin M, Guo Y, Zhang Y, Pan H, Zhou Y. Self-organization of zinc ions with a photosensitizer in vivo for enhanced antibiofilm and infected wound healing. Nanoscale 2022;14:7837-48. [PMID: 35583070 DOI: 10.1039/d2nr01404a] [Reference Citation Analysis]
64 Ma C, Nikiforov A, De Geyter N, Morent R, Ostrikov K(. Plasma for biomedical decontamination: from plasma-engineered to plasma-active antimicrobial surfaces. Current Opinion in Chemical Engineering 2022;36:100764. [DOI: 10.1016/j.coche.2021.100764] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
65 Altaf NUH, Naz MY, Shukrullah S, Ghamkhar M, Irfan M, Rahman S, Jakubowski T, Alqurashi EA, Glowacz A, Mahnashi MH. Non-Thermal Plasma Reduction of Ag(+) Ions into Silver Nanoparticles in Open Atmosphere under Statistically Optimized Conditions for Biological and Photocatalytic Applications. Materials (Basel) 2022;15. [PMID: 35683124 DOI: 10.3390/ma15113826] [Reference Citation Analysis]
66 Padrão T, Sousa SR, Monteiro FJ, Dias JR. Antimicrobial Polymeric Composites to Prevent Hospital-Acquired Infections. Materiais 2022 2022. [DOI: 10.3390/materproc2022008036] [Reference Citation Analysis]
67 Alhawiti AS. Citric acid-mediated green synthesis of selenium nanoparticles: antioxidant, antimicrobial, and anticoagulant potential applications. Biomass Conv Bioref . [DOI: 10.1007/s13399-022-02798-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Figueira F, Tomé JPC, Paz FAA. Porphyrin NanoMetal-Organic Frameworks as Cancer Theranostic Agents. Molecules 2022;27:3111. [PMID: 35630585 DOI: 10.3390/molecules27103111] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Zhuang W, Hu D, Zhang X, Xiong K, Ding X, Lu J, Mao Y, Yang P, Liu C, Wan Y. Antimicrobial power of biosynthesized Ag nanoparticles using refined Ginkgo biloba leaf extracts. Front Mater Sci 2022;16. [DOI: 10.1007/s11706-022-0594-8] [Reference Citation Analysis]
70 Pan Y, Zheng H, Li G, Li Y, Jiang J, Chen J, Xie Q, Wu D, Ma R, Liu X, Xu S, Jiang J, Cai X, Gao M, Wang W, Zuilhof H, Ye M, Li R. Antibiotic-Like Activity of Atomic Layer Boron Nitride for Combating Resistant Bacteria. ACS Nano 2022. [PMID: 35511445 DOI: 10.1021/acsnano.1c11353] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
71 Garg P, Attri P, Sharma R, Chauhan M, Chaudhary GR. Advances and Perspective on Antimicrobial Nanomaterials for Biomedical Applications. Front Nanotechnol 2022;4:898411. [DOI: 10.3389/fnano.2022.898411] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
72 Cheng X, Pei X, Xie W, Chen J, Li Y, Wang J, Gao H, Wan Q. pH‐Triggered Size‐Tunable Silver Nanoparticles: Targeted Aggregation for Effective Bacterial Infection Therapy. Small. [DOI: 10.1002/smll.202200915] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
73 Xiong P, Huang X, Ye N, Lu Q, Zhang G, Peng S, Wang H, Liu Y. Cytotoxicity of Metal-Based Nanoparticles: From Mechanisms and Methods of Evaluation to Pathological Manifestations. Adv Sci (Weinh) 2022;9:e2106049. [PMID: 35343105 DOI: 10.1002/advs.202106049] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
74 Ye L, Cao Z, Liu X, Cui Z, Li Z, Liang Y, Zhu S, Wu S. Noble metal-based nanomaterials as antibacterial agents. Journal of Alloys and Compounds 2022;904:164091. [DOI: 10.1016/j.jallcom.2022.164091] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
75 Mao C, Jin W, Xiang Y, Zhu Y, Wu J, Liu X, Wu S, Zheng Y, Cheung KM, Yeung KWK. Reversing Multidrug‐Resistant Escherichia coli by Compromising Its BAM Biogenesis and Enzymatic Catalysis through Microwave Hyperthermia Therapy. Adv Funct Materials. [DOI: 10.1002/adfm.202202887] [Reference Citation Analysis]
76 Yassin MT, Mostafa AA, Al-askar AA, Al-otibi FO. Facile Green Synthesis of Silver Nanoparticles Using Aqueous Leaf Extract of Origanum majorana with Potential Bioactivity against Multidrug Resistant Bacterial Strains. Crystals 2022;12:603. [DOI: 10.3390/cryst12050603] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 20.0] [Reference Citation Analysis]
77 Bishoyi AK, Sahoo CR, Padhy RN. Recent progression of cyanobacteria and their pharmaceutical utility: an update. J Biomol Struct Dyn 2022;:1-34. [PMID: 35412441 DOI: 10.1080/07391102.2022.2062051] [Reference Citation Analysis]
78 Costa P, Polícia R, Perinka N, Alesanco Y, Viñuales A, Carvalho EO, Pereira N, Fernandes MM, Lanceros‐mendez S. Multifunctional Touch Sensing and Antibacterial Polymer‐Based Core‐Shell Metallic Nanowire Composites for High Traffic Surfaces. Adv Materials Technologies. [DOI: 10.1002/admt.202101575] [Reference Citation Analysis]
79 Duan S, Wu R, Xiong Y, Ren H, Lei C, Zhao Y, Zhang X, Xu F. Multifunctional antimicrobial materials: From rational design to biomedical applications. Progress in Materials Science 2022;125:100887. [DOI: 10.1016/j.pmatsci.2021.100887] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 27.0] [Reference Citation Analysis]
80 Nair Silva-holguín P, de Jesús Ruíz-baltazar Á, Yobanny Reyes-lópez S. Antimicrobial study of the Al2O3-Cu and Al2O3-Hydroxiapatite-Cu spheres. Inorganic Chemistry Communications 2022;138:109253. [DOI: 10.1016/j.inoche.2022.109253] [Reference Citation Analysis]
81 Amiri MR, Alavi M, Taran M, Kahrizi D. Antibacterial, antifungal, antiviral, and photocatalytic activities of TiO 2 nanoparticles, nanocomposites, and bio-nanocomposites: Recent advances and challenges. Journal of Public Health Research 2022;11:227990362211041. [DOI: 10.1177/22799036221104151] [Reference Citation Analysis]
82 Wang H, Chen Z, Cheng S, Li R, Pan X, Zhang C, Gu H, Xie A, Dong W. Synthesis of Cationic Hydrogels with Tunable Physicochemical Properties for Antibacterial Applications. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111228] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
83 Pavithra M, Jessie Raj M. Synthesis of ultrasonic assisted co-precipitated Ag/ZnO nanorods and their profound anti-liver cancer and antibacterial properties. Materials Science and Engineering: B 2022;278:115653. [DOI: 10.1016/j.mseb.2022.115653] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
84 Gaucin-delgado JM, Ortiz-campos A, Hernandez-montiel LG, Fortis-hernandez M, Reyes-pérez JJ, Gonzáles-fuentes JA, Preciado-rangel P. CuO-NPs Improve Biosynthesis of Bioactive Compounds in Lettuce. Plants 2022;11:912. [DOI: 10.3390/plants11070912] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
85 Yang Y, Liu Y, Tu D, Chen M, Zhang Y, Gao H, Chen X. Tumor-Microenvironment-Responsive Biodegradable Nanoagents Based on Lanthanide Nucleotide Self-Assemblies toward Precise Cancer Therapy. Angew Chem Int Ed Engl 2022;61:e202116983. [PMID: 35084798 DOI: 10.1002/anie.202116983] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
86 Ribeiro AI, Dias AM, Zille A. Synergistic Effects Between Metal Nanoparticles and Commercial Antimicrobial Agents: A Review. ACS Appl Nano Mater 2022;5:3030-64. [PMID: 36568315 DOI: 10.1021/acsanm.1c03891] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 20.0] [Reference Citation Analysis]
87 Zu Y, Wang Y, Yao H, Yan L, Yin W, Gu Z. A Copper Peroxide Fenton Nanoagent-Hydrogel as an In Situ pH-Responsive Wound Dressing for Effectively Trapping and Eliminating Bacteria. ACS Appl Bio Mater 2022. [PMID: 35319859 DOI: 10.1021/acsabm.2c00138] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
88 Liu Z, Yi Y, Song L, Chen Y, Tian L, Zhao J, Ren L. Biocompatible mechano-bactericidal nanopatterned surfaces with salt-responsive bacterial release. Acta Biomater 2022;141:198-208. [PMID: 35066170 DOI: 10.1016/j.actbio.2022.01.038] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
89 Nigam S, Bishop JO, Hayat H, Quadri T, Hayat H, Wang P. Nanotechnology in Immunotherapy for Type 1 Diabetes: Promising Innovations and Future Advances. Pharmaceutics 2022;14:644. [DOI: 10.3390/pharmaceutics14030644] [Reference Citation Analysis]
90 Chérif I, Dkhil YO, Smaoui S, Elhadef K, Ferhi M, Ammar S. X-Ray Diffraction Analysis by Modified Scherrer, Williamson–Hall and Size–Strain Plot Methods of ZnO Nanocrystals Synthesized by Oxalate Route: A Potential Antimicrobial Candidate Against Foodborne Pathogens. J Clust Sci. [DOI: 10.1007/s10876-022-02248-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
91 Yang F, Wang A. Recent researches on antimicrobial nanocomposite and hybrid materials based on sepiolite and palygorskite. Applied Clay Science 2022;219:106454. [DOI: 10.1016/j.clay.2022.106454] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
92 Liu W, Wang R, Vedarethinam V, Huang L, Qian K. Advanced materials for precise detection and antibiotic-free inhibition of bacteria. Materials Today Advances 2022;13:100204. [DOI: 10.1016/j.mtadv.2021.100204] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
93 Makvandi P, Chen G, Mattoli V. Nano‐biomedicine: Role of nanomaterials in the biomedical sector. Clinical and Translational Dis 2022;2. [DOI: 10.1002/ctd2.32] [Reference Citation Analysis]
94 Jaiswal KK, Banerjee I, Dutta S, Verma R, Gunti L, Awasthi S, Bhushan M, Kumar V, Alajmi MF, Hussain A. Microwave-assisted polycrystalline Ag/AgO/AgCl nanocomposites synthesis using banana corm (rhizome of Musa sp.) extract: Characterization and antimicrobial studies. Journal of Industrial and Engineering Chemistry 2022;107:145-54. [DOI: 10.1016/j.jiec.2021.11.041] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
95 Chen T, Wang Y, Xie J, Qu X, Liu C. Lysozyme Amyloid Fibril-Integrated PEG Injectable Hydrogel Adhesive with Improved Antiswelling and Antibacterial Capabilities. Biomacromolecules 2022. [PMID: 35195006 DOI: 10.1021/acs.biomac.1c01597] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
96 Hosseini M, Chin AWH, Williams MD, Behzadinasab S, Falkinham JO 3rd, Poon LLM, Ducker WA. Transparent Anti-SARS-CoV-2 and Antibacterial Silver Oxide Coatings. ACS Appl Mater Interfaces 2022;14:8718-27. [PMID: 35138100 DOI: 10.1021/acsami.1c20872] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
97 Nguyen VH, Papanastasiou DT, Resende J, Bardet L, Sannicolo T, Jiménez C, Muñoz-Rojas D, Nguyen ND, Bellet D. Advances in Flexible Metallic Transparent Electrodes. Small 2022;:e2106006. [PMID: 35195360 DOI: 10.1002/smll.202106006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
98 Peng K, Huang Y, Peng N, Chang C. Antibacterial nanocellulose membranes coated with silver nanoparticles for oil/water emulsions separation. Carbohydr Polym 2022;278:118929. [PMID: 34973747 DOI: 10.1016/j.carbpol.2021.118929] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
99 Mao JY, Miscevic D, Unnikrishnan B, Chu HW, Chou CP, Chang L, Lin HJ, Huang CC. Carbon nanogels exert multipronged attack on resistant bacteria and strongly constrain resistance evolution. J Colloid Interface Sci 2022;608:1813-26. [PMID: 34742090 DOI: 10.1016/j.jcis.2021.10.107] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
100 Chen J, Yang J, Chen W, Wang Y, Song G, He H, Wang H, Li P, Wang GP. Tri-functional SERS nanoplatform with tunable plasmonic property for synergistic antibacterial activity and antibacterial process monitoring. J Colloid Interface Sci 2022;608:2266-77. [PMID: 34794806 DOI: 10.1016/j.jcis.2021.10.132] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
101 Aslinjensipriya A, Reena RS, Ragu R, Infantiya SG, Mangalam G, Raj CJ, Das SJ. Exploring the influence of tin in micro-structural, magneto-optical and antimicrobial traits of nickel oxide nanoparticles. Surfaces and Interfaces 2022;28:101605. [DOI: 10.1016/j.surfin.2021.101605] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
102 Zhao S, Li Z, Linklater DP, Han L, Jin P, Wen L, Chen C, Xing D, Ren N, Sun K, Juodkazis S, Ivanova EP, Jiang L. Programmed Death of Injured Pseudomonas aeruginosa on Mechano-Bactericidal Surfaces. Nano Lett 2022. [PMID: 35040647 DOI: 10.1021/acs.nanolett.1c04243] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
103 Zhang X, Tang J, Zhu N, Li L, Wang Y. Water splitting, pollutant degradation and environmental impact using low-index faceted metal-based nanocrystals. A review. Environ Chem Lett. [DOI: 10.1007/s10311-021-01385-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
104 Lallo da Silva B, Garcia MM, Oshiro-junior JA, Sato MR, Caetano BL, Chiavacci LA. Modified zinc oxide nanoparticles against multiresistant Enterobacteriaceae: stability, growth studies, and antibacterial activity. J Sol-Gel Sci Technol. [DOI: 10.1007/s10971-021-05681-0] [Reference Citation Analysis]
105 Chiavacci LA, Lallo da Silva B, Corrêa ÁGS, Pulcinelli SH. Control of the structure and of the release profile of biological active molecules from materials prepared via sol-gel. J Sol-Gel Sci Technol. [DOI: 10.1007/s10971-021-05690-z] [Reference Citation Analysis]
106 Truong LB, Medina-cruz D, Martínez-sanmiguel JJ, Soto-mendoza A, Esquivel-lópez IG, Pérez Y, Saravanan M, Barabadi H, Cholula-díaz JL, Mostafavi E. Biogenic metal nanomaterials to combat antimicrobial resistance. Emerging Nanomaterials and Nano-Based Drug Delivery Approaches to Combat Antimicrobial Resistance 2022. [DOI: 10.1016/b978-0-323-90792-7.00011-7] [Reference Citation Analysis]
107 Mahboubi A, Moghimi HR, Mortazavi SM, Gorji-bahri G, Gandomkarzadeh M. Overcoming antimicrobial resistance by nanoparticles. Emerging Nanomaterials and Nano-Based Drug Delivery Approaches to Combat Antimicrobial Resistance 2022. [DOI: 10.1016/b978-0-323-90792-7.00018-x] [Reference Citation Analysis]
108 Majid A, Arshad H, Khan MAU. Introduction. Nanotechnology in the Life Sciences 2022. [DOI: 10.1007/978-3-031-10216-5_1] [Reference Citation Analysis]
109 Liaqat F, Khazi MI, Awan AS, Eltem R, Li J. Antimicrobial studies of metal oxide nanomaterials. Metal Oxide-Carbon Hybrid Materials 2022. [DOI: 10.1016/b978-0-12-822694-0.00020-x] [Reference Citation Analysis]
110 Zheng K, Xie J. Antimicrobial Properties of Silver and Gold Nanomaterials. Reference Module in Materials Science and Materials Engineering 2022. [DOI: 10.1016/b978-0-12-822425-0.00081-6] [Reference Citation Analysis]
111 Rajakumari R, Tharayil A, Thomas S, Kalarikkal N. Hybrid Nanostructures for Biomedical Applications. Hybrid Phosphor Materials 2022. [DOI: 10.1007/978-3-030-90506-4_12] [Reference Citation Analysis]
112 Arjunan A, Baroutaji A, Robinson J, Wang C. Antibacterial Biomaterials in Orthopedics. Encyclopedia of Smart Materials 2022. [DOI: 10.1016/b978-0-12-815732-9.00131-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
113 Jatoi AS, Akhter F, Mubarak NM, Mazari SA, Ahmed S, Sabzoi N, Memon AQ, Baloch HA, Abro R, Muhammad A. Conventional techniques for nanomaterials preparation. Sustainable Nanotechnology for Environmental Remediation 2022. [DOI: 10.1016/b978-0-12-824547-7.00001-1] [Reference Citation Analysis]
114 Pajerski W, Chytrosz-wrobel P, Golda-cepa M, Pawlyta M, Reczynski W, Ochonska D, Brzychczy-wloch M, Kotarba A. Opposite effects of gold and silver nanoparticle decoration of graphenic surfaces on bacterial attachment. New J Chem . [DOI: 10.1039/d2nj00648k] [Reference Citation Analysis]
115 Salazar-alemán DA, Turner RJ. Metal Based Antimicrobials: Uses and Challenges. Advances in Environmental Microbiology 2022. [DOI: 10.1007/978-3-030-97185-4_4] [Reference Citation Analysis]
116 Pessione E, Garcia-contreras R. Non-Conventional Antimicrobial Agents. Encyclopedia of Infection and Immunity 2022. [DOI: 10.1016/b978-0-12-818731-9.00136-1] [Reference Citation Analysis]
117 Huang Y, Gao Q, Li C, Chen X, Li X, He Y, Jin Q, Ji J. Facile Synthesis of Zn 2+ ‐Based Hybrid Nanoparticles as a New Paradigm for the Treatment of Internal Bacterial Infections. Adv Funct Materials 2022;32:2109011. [DOI: 10.1002/adfm.202109011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
118 Zhao Y, Zhang Z, Pan Z, Liu Y. Advanced bioactive nanomaterials for biomedical applications. Exploration 2021;1:20210089. [DOI: 10.1002/exp.20210089] [Cited by in Crossref: 49] [Cited by in F6Publishing: 54] [Article Influence: 24.5] [Reference Citation Analysis]
119 Ielo I, Giacobello F, Castellano A, Sfameni S, Rando G, Plutino MR. Development of Antibacterial and Antifouling Innovative and Eco-Sustainable Sol-Gel Based Materials: From Marine Areas Protection to Healthcare Applications. Gels 2021;8:26. [PMID: 35049561 DOI: 10.3390/gels8010026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
120 Haidari H, Bright R, Kopecki Z, Zilm PS, Garg S, Cowin AJ, Vasilev K, Goswami N. Polycationic Silver Nanoclusters Comprising Nanoreservoirs of Ag+ Ions with High Antimicrobial and Antibiofilm Activity. ACS Appl Mater Interfaces 2021. [PMID: 34935355 DOI: 10.1021/acsami.1c21657] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
121 Lan G, Yang J, Ye RP, Boyjoo Y, Liang J, Liu X, Li Y, Liu J, Qian K. Sustainable Carbon Materials toward Emerging Applications. Small Methods 2021;5:e2001250. [PMID: 34928103 DOI: 10.1002/smtd.202001250] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 10.5] [Reference Citation Analysis]
122 Hui S, Liu Q, Han Y, Zhang L, Yang J, Jiang S, Qian H, Yang W. ICG@ZIF-8/PDA/Ag composites as chemo-photothermal antibacterial agents for efficient sterilization and enhanced wound disinfection. J Mater Chem B 2021;9:9961-70. [PMID: 34870667 DOI: 10.1039/d1tb02107a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
123 Liu X, Yu H, Wang L, Huang Z, Haq F, Teng L, Jin M, Ding B. Recent Advances on Designs and Applications of Hydrogel Adhesives. Adv Materials Inter 2022;9:2101038. [DOI: 10.1002/admi.202101038] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
124 Gao X, Ding J, Liao C, Xu J, Liu X, Lu W. Defensins: The natural peptide antibiotic. Adv Drug Deliv Rev 2021;179:114008. [PMID: 34673132 DOI: 10.1016/j.addr.2021.114008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
125 Materón EM, Miyazaki CM, Carr O, Joshi N, Picciani PH, Dalmaschio CJ, Davis F, Shimizu FM. Magnetic nanoparticles in biomedical applications: A review. Applied Surface Science Advances 2021;6:100163. [DOI: 10.1016/j.apsadv.2021.100163] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
126 Ye J, Li B, Zheng Y, Wu S, Chen D, Han Y. Eco-friendly bacteria-killing by nanorods through mechano-puncture with top selectivity. Bioactive Materials 2021. [DOI: 10.1016/j.bioactmat.2021.11.028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
127 Hajipour P, Eslami A, Bahrami A, Hosseini-abari A, Saber FY, Mohammadi R, Yazdan Mehr M. Surface modification of TiO2 nanoparticles with CuO for visible-light antibacterial applications and photocatalytic degradation of antibiotics. Ceramics International 2021;47:33875-85. [DOI: 10.1016/j.ceramint.2021.08.300] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
128 Khina AG, Krutyakov YA. Similarities and Differences in the Mechanism of Antibacterial Action of Silver Ions and Nanoparticles. Appl Biochem Microbiol 2021;57:683-93. [DOI: 10.1134/s0003683821060053] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
129 Melo L, Hui A, Kowal M, Boateng E, Poursorkh Z, Rocheron E, Wong J, Christy A, Grant E. Size Distributions of Gold Nanoparticles in Solution Measured by Single-Particle Mass Photometry. J Phys Chem B 2021;125:12466-75. [PMID: 34734725 DOI: 10.1021/acs.jpcb.1c05557] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
130 Rahim MI, Doll K, Stumpp NS, Eisenburger M, Stiesch M. Multilayered Adsorption of Commensal Microflora on Implant Surfaces: an Unconventional and Innovative Method to Prevent Bacterial Infections Associated with Biomaterials. Adv Materials Inter 2021;8:2101410. [DOI: 10.1002/admi.202101410] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
131 Bi X, Bai Q, Liang M, Yang D, Li S, Wang L, Liu J, Yu WW, Sui N, Zhu Z. Silver Peroxide Nanoparticles for Combined Antibacterial Sonodynamic and Photothermal Therapy. Small 2021;:e2104160. [PMID: 34741419 DOI: 10.1002/smll.202104160] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
132 Luo Z, Fan X, Chen Y, Lai X, Li Z, Wu YL, He C. Mitochondria targeted composite enzyme nanogels for synergistic starvation and photodynamic therapy. Nanoscale 2021;13:17737-45. [PMID: 34697618 DOI: 10.1039/d1nr06214j] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
133 Gong C, Sun J, Xiao Y, Qu X, Lang M. Synthetic Mimics of Antimicrobial Peptides for the Targeted Therapy of Multidrug-Resistant Bacterial Infection. Adv Healthc Mater 2021;10:e2101244. [PMID: 34410043 DOI: 10.1002/adhm.202101244] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
134 Guo S, Yu B, Ahmed A, Cong H, Shen Y. Synthesis of polyacrylonitrile/polytetrahydropyrimidine (PAN/PTHP) nanofibers with enhanced antibacterial and anti-viral activities for personal protective equipment. J Hazard Mater 2021;424:127602. [PMID: 34749230 DOI: 10.1016/j.jhazmat.2021.127602] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
135 Zou MZ, Li ZH, Bai XF, Liu CJ, Zhang XZ. Hybrid Vesicles Based on Autologous Tumor Cell Membrane and Bacterial Outer Membrane To Enhance Innate Immune Response and Personalized Tumor Immunotherapy. Nano Lett 2021;21:8609-18. [PMID: 34661419 DOI: 10.1021/acs.nanolett.1c02482] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
136 Long Q, Jia B, Shi Y, Wang Q, Yu H, Li Z. DNA Nanodevice as a Co-delivery Vehicle of Antisense Oligonucleotide and Silver Ions for Selective Inhibition of Bacteria Growth. ACS Appl Mater Interfaces 2021;13:47987-95. [PMID: 34585574 DOI: 10.1021/acsami.1c15585] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
137 Meng J, Yang J, Pan T, Qu X, Cui S. ZnO nanoparticles promote the malignant transformation of colorectal epithelial cells in APCmin/+ mice. Environ Int 2021;158:106923. [PMID: 34634619 DOI: 10.1016/j.envint.2021.106923] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
138 Cao F, Ma G, Mei L, Zhu G, Song M, Qin Q, Jiao M. Development of disulfide bond crosslinked antimicrobial peptide hydrogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;626:127026. [DOI: 10.1016/j.colsurfa.2021.127026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
139 Kaur Billing B. Carbon Nanotubes and its Potential Application in Sensing. ChemistrySelect 2021;6:9571-90. [DOI: 10.1002/slct.202102636] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
140 Bagheri M, Validi M, Gholipour A, Makvandi P, Sharifi E. Chitosan nanofiber biocomposites for potential wound healing applications: Antioxidant activity with synergic antibacterial effect. Bioengineering & Transla Med 2022;7. [DOI: 10.1002/btm2.10254] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 17.0] [Reference Citation Analysis]
141 Han J, Feng Y, Liu Z, Chen Q, Shen Y, Feng F, Liu L, Zhong M, Zhai Y, Bockstaller M, Zhao Z. Degradable GO-Nanocomposite hydrogels with synergistic photothermal and antibacterial response. Polymer 2021;230:124018. [DOI: 10.1016/j.polymer.2021.124018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
142 Qin J, Feng Y, Cheng D, Liu B, Wang Z, Zhao Y, Wei J. Construction of a Mesoporous Ceria Hollow Sphere/Enzyme Nanoreactor for Enhanced Cascade Catalytic Antibacterial Therapy. ACS Appl Mater Interfaces 2021;13:40302-14. [PMID: 34412471 DOI: 10.1021/acsami.1c10821] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
143 Naikoo GA, Mustaqeem M, Hassan IU, Awan T, Arshad F, Salim H, Qurashi A. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review. Journal of Saudi Chemical Society 2021;25:101304. [DOI: 10.1016/j.jscs.2021.101304] [Cited by in Crossref: 46] [Cited by in F6Publishing: 28] [Article Influence: 23.0] [Reference Citation Analysis]
144 Makvandi P, Zarepour A, Zheng X, Agarwal T, Ghomi M, Sartorius R, Zare EN, Zarrabi A, Wu A, Maiti TK, Smith BR, Varma RS, Tay FR, Mattoli V. Non-spherical nanostructures in nanomedicine: From noble metal nanorods to transition metal dichalcogenide nanosheets. Applied Materials Today 2021;24:101107. [DOI: 10.1016/j.apmt.2021.101107] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
145 Hu XL, Shang Y, Yan KC, Sedgwick AC, Gan HQ, Chen GR, He XP, James TD, Chen D. Low-dimensional nanomaterials for antibacterial applications. J Mater Chem B 2021;9:3640-61. [PMID: 33870985 DOI: 10.1039/d1tb00033k] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
146 Karami A, Farivar F, de Prinse TJ, Rabiee H, Kidd S, Sumby CJ, Bi J. Facile Multistep Synthesis of ZnO-Coated β-NaYF4:Yb/Tm Upconversion Nanoparticles as an Antimicrobial Photodynamic Therapy for Persistent Staphylococcus aureus Small Colony Variants. ACS Appl Bio Mater 2021;4:6125-36. [PMID: 35006903 DOI: 10.1021/acsabm.1c00473] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
147 Zhou Y, Yang M, Jia Q, Miao G, Wan L, Zhang Y. Study on Occluding Dentinal Tubules with a Nanosilver-Loaded Silica System In Vitro. ACS Omega 2021;6:19596-605. [PMID: 34368546 DOI: 10.1021/acsomega.1c02123] [Reference Citation Analysis]
148 Jurak M, Wiącek AE, Ładniak A, Przykaza K, Szafran K. What affects the biocompatibility of polymers? Adv Colloid Interface Sci 2021;294:102451. [PMID: 34098385 DOI: 10.1016/j.cis.2021.102451] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 14.0] [Reference Citation Analysis]
149 Riduan SN, Zhang Y. Recent Advances of Zinc-based Antimicrobial Materials. Chem Asian J 2021. [PMID: 34313021 DOI: 10.1002/asia.202100656] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
150 Nikfarjam N, Ghomi M, Agarwal T, Hassanpour M, Sharifi E, Khorsandi D, Ali Khan M, Rossi F, Rossetti A, Nazarzadeh Zare E, Rabiee N, Afshar D, Vosough M, Kumar Maiti T, Mattoli V, Lichtfouse E, Tay FR, Makvandi P. Antimicrobial Ionic Liquid‐Based Materials for Biomedical Applications. Adv Funct Mater 2021;31:2104148. [DOI: 10.1002/adfm.202104148] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 22.0] [Reference Citation Analysis]
151 El-mansy MAM, Suvitha A, Narayana B. Exploring crystal, electronic, optical and NLO properties of ethyl 4-(3,4-dimethoxy phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro pyrimidine-5-carboxylate (MTTHPC). Opt Quant Electron 2021;53. [DOI: 10.1007/s11082-021-03057-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
152 Liu Y, Halder A, Seifert S, Marcella N, Vajda S, Frenkel AI. Probing Active Sites in CuxPdy Cluster Catalysts by Machine-Learning-Assisted X-ray Absorption Spectroscopy. ACS Appl Mater Interfaces 2021. [PMID: 34255469 DOI: 10.1021/acsami.1c06714] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
153 Pourhajibagher M, Bahador A. Synergistic biocidal effects of metal oxide nanoparticles-assisted ultrasound irradiation: Antimicrobial sonodynamic therapy against Streptococcus mutans biofilms. Photodiagnosis Photodyn Ther 2021;35:102432. [PMID: 34246828 DOI: 10.1016/j.pdpdt.2021.102432] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
154 Yang Y, Ding Y, Fan Y, Ren L, Tang X, Meng X. Application of silver nanoparticles in situ synthesized in dental adhesive resin. International Journal of Adhesion and Adhesives 2021;108:102890. [DOI: 10.1016/j.ijadhadh.2021.102890] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
155 Meng J, Gao Y, Li W, Wang J, Chen X. Gold nanoclusters exert antibacterial effects against gram-negative bacteria by targeting thiol-redox homeostasis. Talanta 2021;234:122618. [PMID: 34364427 DOI: 10.1016/j.talanta.2021.122618] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
156 Wu Y, Yan C, Wang Y, Gao C, Liu Y. Biomimetic structure of chitosan reinforced epoxy natural rubber with self-healed, recyclable and antimicrobial ability. Int J Biol Macromol 2021;184:9-19. [PMID: 34116089 DOI: 10.1016/j.ijbiomac.2021.06.037] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
157 Ling L, Cai S, Li Q, Sun J, Bao X, Xu G. Recent advances in hydrothermal modification of calcium phosphorus coating on magnesium alloy. Journal of Magnesium and Alloys 2021. [DOI: 10.1016/j.jma.2021.05.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
158 Huo S, Gao Y, Fang L, Jiang Z, Xie Q, Meng Q, Fei G, Ding S. Graphene oxide with acid-activated bacterial membrane anchoring for improving synergistic antibacterial performances. Applied Surface Science 2021;551:149444. [DOI: 10.1016/j.apsusc.2021.149444] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
159 Silva-holguín PN, Reyes-lópez SY. Alumina-Hydroxyapatite-Silver Spheres With Antibacterial Activity. Dose-Response 2021;19:155932582110113. [DOI: 10.1177/15593258211011337] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
160 Qin M, Zhang L, Zhao X, Wu H. Lightweight Ni Foam‐Based Ultra‐Broadband Electromagnetic Wave Absorber. Adv Funct Materials 2021;31:2103436. [DOI: 10.1002/adfm.202103436] [Cited by in Crossref: 91] [Cited by in F6Publishing: 102] [Article Influence: 45.5] [Reference Citation Analysis]
161 Borjihan Q, Dong A. Design of nanoengineered antibacterial polymers for biomedical applications. Biomater Sci 2020;8:6867-82. [PMID: 32756731 DOI: 10.1039/d0bm00788a] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
162 Xu M, Song Y, Wang J, Li N. Anisotropic transition metal–based nanomaterials for biomedical applications. VIEW 2021;2:20200154. [DOI: 10.1002/viw.20200154] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
163 Kunrath MF, Campos MM. Metallic-nanoparticle release systems for biomedical implant surfaces: effectiveness and safety. Nanotoxicology 2021;15:721-39. [PMID: 33896331 DOI: 10.1080/17435390.2021.1915401] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
164 Ali S, Chen X, Ajmal Shah M, Ali M, Zareef M, Arslan M, Ahmad S, Jiao T, Li H, Chen Q. The avenue of fruit wastes to worth for synthesis of silver and gold nanoparticles and their antimicrobial application against foodborne pathogens: A review. Food Chem 2021;359:129912. [PMID: 33934027 DOI: 10.1016/j.foodchem.2021.129912] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
165 Tang Y, Qin Z, Yin S, Sun H. Transition metal oxide and chalcogenide-based nanomaterials for antibacterial activities: an overview. Nanoscale 2021;13:6373-88. [PMID: 33885521 DOI: 10.1039/d1nr00664a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
166 Zare EN, Zheng X, Makvandi P, Gheybi H, Sartorius R, Yiu CKY, Adeli M, Wu A, Zarrabi A, Varma RS, Tay FR. Nonspherical Metal‐Based Nanoarchitectures: Synthesis and Impact of Size, Shape, and Composition on Their Biological Activity. Small 2021;17:2007073. [DOI: 10.1002/smll.202007073] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
167 Sanguramath RA, Laadan B, Raz N, Katalan A, Benarroch DJ, Franco A. CuO(1-x)ZnO x nanocomposite with broad spectrum antibacterial activity: application in medical devices and acrylic paints. Nanotechnology 2021;32:215603. [PMID: 33682686 DOI: 10.1088/1361-6528/abe826] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
168 Omerović N, Djisalov M, Živojević K, Mladenović M, Vunduk J, Milenković I, Knežević NŽ, Gadjanski I, Vidić J. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Comprehensive Reviews in Food Science and Food Safety 2021;20:2428-54. [DOI: 10.1111/1541-4337.12727] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 27.0] [Reference Citation Analysis]
169 Al Jahdaly BA, Al-radadi NS, Eldin GM, Almahri A, Ahmed M, Shoueir K, Janowska I. Selenium nanoparticles synthesized using an eco-friendly method: dye decolorization from aqueous solutions, cell viability, antioxidant, and antibacterial effectiveness. Journal of Materials Research and Technology 2021;11:85-97. [DOI: 10.1016/j.jmrt.2020.12.098] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 17.5] [Reference Citation Analysis]
170 Fallah Z, Zare EN, Ghomi M, Ahmadijokani F, Amini M, Tajbakhsh M, Arjmand M, Sharma G, Ali H, Ahmad A, Makvandi P, Lichtfouse E, Sillanpää M, Varma RS. Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials. Chemosphere 2021;275:130055. [PMID: 33984903 DOI: 10.1016/j.chemosphere.2021.130055] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 21.5] [Reference Citation Analysis]
171 Makvandi P, Baghbantaraghdari Z, Zhou W, Zhang Y, Manchanda R, Agarwal T, Wu A, Maiti TK, Varma RS, Smith BR. Gum polysaccharide/nanometal hybrid biocomposites in cancer diagnosis and therapy. Biotechnol Adv 2021;48:107711. [PMID: 33592279 DOI: 10.1016/j.biotechadv.2021.107711] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
172 Saraf M, Tavakkoli Yaraki M, Prateek, Tan YN, Gupta RK. Insights and Perspectives Regarding Nanostructured Fluorescent Materials toward Tackling COVID-19 and Future Pandemics. ACS Appl Nano Mater 2021;4:911-48. [DOI: 10.1021/acsanm.0c02945] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
173 Chen WF, Malacco CMS, Mehmood R, Johnson KK, Yang JL, Sorrell CC, Koshy P. Impact of morphology and collagen-functionalization on the redox equilibria of nanoceria for cancer therapies. Mater Sci Eng C Mater Biol Appl 2021;120:111663. [PMID: 33545829 DOI: 10.1016/j.msec.2020.111663] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
174 De Sio L, Ding B, Focsan M, Kogermann K, Pascoal-Faria P, Petronela F, Mitchell G, Zussman E, Pierini F. Personalized Reusable Face Masks with Smart Nano-Assisted Destruction of Pathogens for COVID-19: A Visionary Road. Chemistry 2021;27:6112-30. [PMID: 33284500 DOI: 10.1002/chem.202004875] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 19.5] [Reference Citation Analysis]
175 Žalnėravičius R, Klimas V, Paškevičius A, Grincienė G, Karpicz R, Jagminas A, Ramanavičius A. Highly efficient antimicrobial agents based on sulfur-enriched, hydrophilic molybdenum disulfide nano/microparticles and coatings functionalized with palladium nanoparticles. J Colloid Interface Sci 2021;591:115-28. [PMID: 33596501 DOI: 10.1016/j.jcis.2021.01.103] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
176 Erkoc P, Ulucan-karnak F. Nanotechnology-Based Antimicrobial and Antiviral Surface Coating Strategies. Prosthesis 2021;3:25-52. [DOI: 10.3390/prosthesis3010005] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 16.5] [Reference Citation Analysis]
177 Lewisoscar F, Nithya C, Vismaya S, Arunkumar M, Pugazhendhi A, Nguyen-tri P, Alharbi SA, Alharbi NS, Thajuddin N. In vitro analysis of green fabricated silver nanoparticles (AgNPs) against Pseudomonas aeruginosa PA14 biofilm formation, their application on urinary catheter. Progress in Organic Coatings 2021;151:106058. [DOI: 10.1016/j.porgcoat.2020.106058] [Cited by in Crossref: 28] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
178 Zhang X, Zhang Z, Shu Q, Xu C, Zheng Q, Guo Z, Wang C, Hao Z, Liu X, Wang G, Yan W, Chen H, Lu C. Copper Clusters: An Effective Antibacterial for Eradicating Multidrug‐Resistant Bacterial Infection In Vitro and In Vivo. Adv Funct Mater 2021;31:2008720. [DOI: 10.1002/adfm.202008720] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 20.5] [Reference Citation Analysis]
179 Deng J, Ren L, Pan Y, Gao H, Meng X. Antifungal property of acrylic denture soft liner containing silver nanoparticles synthesized in situ. J Dent 2021;106:103589. [PMID: 33524431 DOI: 10.1016/j.jdent.2021.103589] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
180 Chaudhary V, Royal A, Chavali M, Yadav SK. Advancements in research and development to combat COVID-19 using nanotechnology. Nanotechnol Environ Eng 2021;6. [DOI: 10.1007/s41204-021-00102-7] [Cited by in Crossref: 36] [Cited by in F6Publishing: 12] [Article Influence: 18.0] [Reference Citation Analysis]
181 Chiang YC, Wang YC, Kung JC, Shih CJ. Antibacterial silver-containing mesoporous bioglass as a dentin remineralization agent in a microorganism-challenged environment. J Dent 2021;106:103563. [PMID: 33482245 DOI: 10.1016/j.jdent.2020.103563] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
182 Baktash MS, Zarrabi A, Avazverdi E, Reis NM. Development and optimization of a new hybrid chitosan-grafted graphene oxide/magnetic nanoparticle system for theranostic applications. Journal of Molecular Liquids 2021;322:114515. [DOI: 10.1016/j.molliq.2020.114515] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
183 Li H, Huang D, Ren K, Ji J. Inorganic-polymer composite coatings for biomedical devices. Smart Materials in Medicine 2021;2:1-14. [DOI: 10.1016/j.smaim.2020.10.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
184 Ali A, Liu J, Zhou H, Liu T, Ovais M, Liu H, Rui Y, Chen C. Graphdiyne–hemin-mediated catalytic system for wound disinfection and accelerated wound healing. Mater Chem Front 2021;5:6041-51. [DOI: 10.1039/d1qm00490e] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
185 Kshtriya V, Koshti B, Gour N. Green synthesized nanoparticles: Classification, synthesis, characterization, and applications. Biosynthesized Nanomaterials 2021. [DOI: 10.1016/bs.coac.2020.12.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
186 Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv 2021;2:1821-71. [DOI: 10.1039/d0ma00807a] [Cited by in Crossref: 260] [Cited by in F6Publishing: 293] [Article Influence: 130.0] [Reference Citation Analysis]
187 Chong Y, Ge C. Rational design of metal-based antimicrobial nanomaterials in environmental applications. Environ Sci : Nano 2021;8:3478-92. [DOI: 10.1039/d1en00714a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
188 ElBagoury M, Tolba MM, Nasser HA, Jabbar A, Elagouz AM, Aktham Y, Hutchinson A. The find of COVID-19 vaccine: Challenges and opportunities. J Infect Public Health 2021;14:389-416. [PMID: 33647555 DOI: 10.1016/j.jiph.2020.12.025] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 8.3] [Reference Citation Analysis]
189 Oksel Karakus C, Bilgi E, Winkler DA. Biomedical nanomaterials: applications, toxicological concerns, and regulatory needs. Nanotoxicology 2021;15:331-51. [PMID: 33337941 DOI: 10.1080/17435390.2020.1860265] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
190 Valerini D, Tammaro L, Vigliotta G, Picariello E, Banfi F, Cavaliere E, Ciambriello L, Gavioli L. Ag Functionalization of Al-Doped ZnO Nanostructured Coatings on PLA Substrate for Antibacterial Applications. Coatings 2020;10:1238. [DOI: 10.3390/coatings10121238] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
191 Bishoyi AK, Sahoo CR, Sahoo AP, Padhy RN. Bio-synthesis of silver nanoparticles with the brackish water blue-green alga Oscillatoria princeps and antibacterial assessment. Appl Nanosci 2021;11:389-98. [DOI: 10.1007/s13204-020-01593-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
192 Han Q, Lau JW, Do TC, Zhang Z, Xing B. Near-Infrared Light Brightens Bacterial Disinfection: Recent Progress and Perspectives. ACS Appl Bio Mater 2021;4:3937-61. [DOI: 10.1021/acsabm.0c01341] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
193 Park S, Jeon Y, Han T, Kim S, Gwon Y, Kim J. Nanoscale manufacturing as an enabling strategy for the design of smart food packaging systems. Food Packaging and Shelf Life 2020;26:100570. [DOI: 10.1016/j.fpsl.2020.100570] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
194 Ceylan O, Tamfu AN, Doğaç Yİ, Teke M. Antibiofilm and anti-quorum sensing activities of polyethylene imine coated magnetite and nickel ferrite nanoparticles. 3 Biotech 2020;10:513. [PMID: 33184597 DOI: 10.1007/s13205-020-02509-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
195 Sapkota KP, Hassan MM, Shrestha S, Hanif MA, Islam MA, Akter J, Abbas HG, Hahn JR. Heterojunction formation between copper(II) oxide nanoparticles and single-walled carbon nanotubes to enhance antibacterial performance. Int J Pharm 2020;590:119937. [PMID: 33011252 DOI: 10.1016/j.ijpharm.2020.119937] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
196 Huang T, Holden JA, Reynolds EC, Heath DE, O'Brien-Simpson NM, O'Connor AJ. Multifunctional Antimicrobial Polypeptide-Selenium Nanoparticles Combat Drug-Resistant Bacteria. ACS Appl Mater Interfaces 2020;12:55696-709. [PMID: 33249831 DOI: 10.1021/acsami.0c17550] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
197 Xu Y, Zhao S, Weng Z, Zhang W, Wan X, Cui T, Ye J, Liao L, Wang X. Jelly-Inspired Injectable Guided Tissue Regeneration Strategy with Shape Auto-Matched and Dual-Light-Defined Antibacterial/Osteogenic Pattern Switch Properties. ACS Appl Mater Interfaces 2020;12:54497-506. [PMID: 33226209 DOI: 10.1021/acsami.0c18070] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
198 Shah KW, Huseien GF. Inorganic nanomaterials for fighting surface and airborne pathogens and viruses. Nano Ex 2020;1:032003. [DOI: 10.1088/2632-959x/abc706] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
199 Srivastava V, Zare EN, Makvandi P, Zheng XQ, Iftekhar S, Wu A, Padil VVT, Mokhtari B, Varma RS, Tay FR, Sillanpaa M. Cytotoxic aquatic pollutants and their removal by nanocomposite-based sorbents. Chemosphere 2020;258:127324. [PMID: 32544812 DOI: 10.1016/j.chemosphere.2020.127324] [Cited by in Crossref: 40] [Cited by in F6Publishing: 26] [Article Influence: 13.3] [Reference Citation Analysis]
200 Amiri N, Ajami S, Shahroodi A, Jannatabadi N, Amiri Darban S, Fazly Bazzaz BS, Pishavar E, Kalalinia F, Movaffagh J. Teicoplanin-loaded chitosan-PEO nanofibers for local antibiotic delivery and wound healing. International Journal of Biological Macromolecules 2020;162:645-56. [DOI: 10.1016/j.ijbiomac.2020.06.195] [Cited by in Crossref: 49] [Cited by in F6Publishing: 53] [Article Influence: 16.3] [Reference Citation Analysis]
201 Sivan SK, Shankar SS, N S, Kandambath Padinjareveetil A, Pilankatta R, Kumar VBS, Mathew B, George B, Makvandi P, Černík M, Padil VVT, Varma RS. Fabrication of a Greener TiO2@Gum Arabic-Carbon Paste Electrode for the Electrochemical Detection of Pb2+ Ions in Plastic Toys. ACS Omega 2020;5:25390-9. [PMID: 33043219 DOI: 10.1021/acsomega.0c03781] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
202 Zheng K, Li S, Jing L, Chen PY, Xie J. Synergistic Antimicrobial Titanium Carbide (MXene) Conjugated with Gold Nanoclusters. Adv Healthc Mater 2020;9:e2001007. [PMID: 32881328 DOI: 10.1002/adhm.202001007] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 11.7] [Reference Citation Analysis]
203 Schoon J, Hesse B, Rakow A, Ort MJ, Lagrange A, Jacobi D, Winter A, Huesker K, Reinke S, Cotte M, Tucoulou R, Marx U, Perka C, Duda GN, Geissler S. Metal-Specific Biomaterial Accumulation in Human Peri-Implant Bone and Bone Marrow. Adv Sci (Weinh) 2020;7:2000412. [PMID: 33101844 DOI: 10.1002/advs.202000412] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 8.0] [Reference Citation Analysis]
204 Jamaledin R, Makvandi P, Yiu CKY, Agarwal T, Vecchione R, Sun W, Maiti TK, Tay FR, Netti PA. Engineered Microneedle Patches for Controlled Release of Active Compounds: Recent Advances in Release Profile Tuning. Adv Therap 2020;3:2000171. [DOI: 10.1002/adtp.202000171] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
205 Xu D, Wang T, Wang S, Jiang Y, Wang Y, Chen Y, Bi Z, Geng S. Antibacterial Effect of the Controlled Nanoscale Precipitates Obtained by Different Heat Treatment Schemes with a Ti-Based Nanomaterial, Ti-7.5Mo-5Cu Alloy. ACS Appl Bio Mater 2020;3:6145-54. [PMID: 35021747 DOI: 10.1021/acsabm.0c00716] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
206 Garcia IM, Souza VS, Souza JD, Visioli F, Leitune VCB, Scholten JD, Collares FM. Zinc-based particle with ionic liquid as a hybrid filler for dental adhesive resin. J Dent 2020;102:103477. [PMID: 32950630 DOI: 10.1016/j.jdent.2020.103477] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
207 El-hefnawy ME. Biodegradable Films from Phytosynthesized TiO 2 Nanoparticles and Nanofungal Chitosan as Probable Nanofertilizers. International Journal of Polymer Science 2020;2020:1-7. [DOI: 10.1155/2020/6727132] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
208 Zare EN, Padil VVT, Mokhtari B, Venkateshaiah A, Wacławek S, Černík M, Tay FR, Varma RS, Makvandi P. Advances in biogenically synthesized shaped metal- and carbon-based nanoarchitectures and their medicinal applications. Adv Colloid Interface Sci 2020;283:102236. [PMID: 32829011 DOI: 10.1016/j.cis.2020.102236] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
209 Ohadi M, Forootanfar H, Dehghannoudeh G, Eslaminejad T, Ameri A, Shakibaie M, Najafi A. Biosynthesis of Gold Nanoparticles Assisted by Lipopeptide Biosurfactant Derived from Acinetobacter junii B6 and Evaluation of Its Antibacterial and Cytotoxic Activities. BioNanoSci 2020;10:899-908. [DOI: 10.1007/s12668-020-00782-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
210 Reina G, Peng S, Jacquemin L, Andrade AF, Bianco A. Hard Nanomaterials in Time of Viral Pandemics. ACS Nano 2020;14:9364-88. [PMID: 32667191 DOI: 10.1021/acsnano.0c04117] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 15.7] [Reference Citation Analysis]
211 Makvandi P, Ghomi M, Ashrafizadeh M, Tafazoli A, Agarwal T, Delfi M, Akhtari J, Zare EN, Padil VVT, Zarrabi A, Pourreza N, Miltyk W, Maiti TK. A review on advances in graphene-derivative/polysaccharide bionanocomposites: Therapeutics, pharmacogenomics and toxicity. Carbohydr Polym 2020;250:116952. [PMID: 33049857 DOI: 10.1016/j.carbpol.2020.116952] [Cited by in Crossref: 36] [Cited by in F6Publishing: 41] [Article Influence: 12.0] [Reference Citation Analysis]
212 Ur Rehman MA. Zein/Bioactive Glass Coatings with Controlled Degradation of Magnesium under Physiological Conditions: Designed for Orthopedic Implants. Prosthesis 2020;2:211-24. [DOI: 10.3390/prosthesis2030018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
213 Araujo HC, da Silva ACG, Paião LI, Magario MKW, Frasnelli SCT, Oliveira SHP, Pessan JP, Monteiro DR. Antimicrobial, antibiofilm and cytotoxic effects of a colloidal nanocarrier composed by chitosan-coated iron oxide nanoparticles loaded with chlorhexidine. J Dent 2020;101:103453. [PMID: 32827599 DOI: 10.1016/j.jdent.2020.103453] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
214 Andoy NMO, Jeon K, Kreis CT, Sullan RMA. Multifunctional and Stimuli‐Responsive Polydopamine Nanoparticle‐Based Platform for Targeted Antimicrobial Applications. Adv Funct Mater 2020;30:2004503. [DOI: 10.1002/adfm.202004503] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
215 Jamaledin R, Yiu CKY, Zare EN, Niu LN, Vecchione R, Chen G, Gu Z, Tay FR, Makvandi P. Advances in Antimicrobial Microneedle Patches for Combating Infections. Adv Mater 2020;32:e2002129. [PMID: 32602146 DOI: 10.1002/adma.202002129] [Cited by in Crossref: 115] [Cited by in F6Publishing: 122] [Article Influence: 38.3] [Reference Citation Analysis]
216 Kanikireddy V, Varaprasad K, Jayaramudu T, Karthikeyan C, Sadiku R. Carboxymethyl cellulose-based materials for infection control and wound healing: A review. Int J Biol Macromol 2020;164:963-75. [PMID: 32707282 DOI: 10.1016/j.ijbiomac.2020.07.160] [Cited by in Crossref: 90] [Cited by in F6Publishing: 101] [Article Influence: 30.0] [Reference Citation Analysis]
217 Makvandi P, Ghomi M, Padil VVT, Shalchy F, Ashrafizadeh M, Askarinejad S, Pourreza N, Zarrabi A, Nazarzadeh Zare E, Kooti M, Mokhtari B, Borzacchiello A, Tay FR. Biofabricated Nanostructures and Their Composites in Regenerative Medicine. ACS Appl Nano Mater 2020;3:6210-38. [DOI: 10.1021/acsanm.0c01164] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
218 Padil VVT, Cheong JY, Kp A, Makvandi P, Zare EN, Torres-Mendieta R, Wacławek S, Černík M, Kim ID, Varma RS. Electrospun fibers based on carbohydrate gum polymers and their multifaceted applications. Carbohydr Polym 2020;247:116705. [PMID: 32829833 DOI: 10.1016/j.carbpol.2020.116705] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
219 Janani N, Zare EN, Salimi F, Makvandi P. Antibacterial tragacanth gum-based nanocomposite films carrying ascorbic acid antioxidant for bioactive food packaging. Carbohydr Polym 2020;247:116678. [PMID: 32829806 DOI: 10.1016/j.carbpol.2020.116678] [Cited by in Crossref: 40] [Cited by in F6Publishing: 33] [Article Influence: 13.3] [Reference Citation Analysis]
220 Delfi M, Ghomi M, Zarrabi A, Mohammadinejad R, Taraghdari ZB, Ashrafizadeh M, Zare EN, Agarwal T, Padil VVT, Mokhtari B, Rossi F, Perale G, Sillanpaa M, Borzacchiello A, Kumar Maiti T, Makvandi P. Functionalization of Polymers and Nanomaterials for Biomedical Applications: Antimicrobial Platforms and Drug Carriers. Prosthesis 2020;2:117-39. [DOI: 10.3390/prosthesis2020012] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
221 Ashrafizadeh M, Najafi M, Makvandi P, Zarrabi A, Farkhondeh T, Samarghandian S. Versatile role of curcumin and its derivatives in lung cancer therapy. J Cell Physiol 2020;235:9241-68. [PMID: 32519340 DOI: 10.1002/jcp.29819] [Cited by in Crossref: 44] [Cited by in F6Publishing: 48] [Article Influence: 14.7] [Reference Citation Analysis]
222 Ijaz H, Zia R, Taj A, Jameel F, Butt FK, Asim T, Jameel N, Abbas W, Iqbal M, Bajwa SZ, Khan WS. Synthesis of BiOCl nanoplatelets as the dual interfaces for the detection of glutathione linked disease biomarkers and biocompatibility assessment in vitro against HCT cell lines model. Appl Nanosci 2020;10:3569-76. [DOI: 10.1007/s13204-020-01461-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
223 Wang C, Makvandi P, Zare EN, Tay FR, Niu L. Advances in Antimicrobial Organic and Inorganic Nanocompounds in Biomedicine. Adv Therap 2020;3:2000024. [DOI: 10.1002/adtp.202000024] [Cited by in Crossref: 59] [Cited by in F6Publishing: 58] [Article Influence: 19.7] [Reference Citation Analysis]
224 Zhou W, Qiao Z, Nazarzadeh Zare E, Huang J, Zheng X, Sun X, Shao M, Wang H, Wang X, Chen D, Zheng J, Fang S, Li YM, Zhang X, Yang L, Makvandi P, Wu A. 4D-Printed Dynamic Materials in Biomedical Applications: Chemistry, Challenges, and Their Future Perspectives in the Clinical Sector. J Med Chem 2020;63:8003-24. [DOI: 10.1021/acs.jmedchem.9b02115] [Cited by in Crossref: 55] [Cited by in F6Publishing: 58] [Article Influence: 18.3] [Reference Citation Analysis]
225 Kosec T, Močnik P, Mezeg U, Legat A, Ovsenik M, Jenko M, Grant JT, Primožič J. Tribocorrosive Study of New and In Vivo Exposed Nickel Titanium and Stainless Steel Orthodontic Archwires. Coatings 2020;10:230. [DOI: 10.3390/coatings10030230] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
226 Lv X, Zhang J, Yang D, Shao J, Wang W, Zhang Q, Dong X. Recent advances in pH-responsive nanomaterials for anti-infective therapy. J Mater Chem B 2020;8:10700-11. [DOI: 10.1039/d0tb02177f] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
227 Zare EN, Makvandi P. Antimicrobial Metal-Based Nanomaterials and Their Industrial and Biomedical Applications. Engineered Antimicrobial Surfaces 2020. [DOI: 10.1007/978-981-15-4630-3_7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]