BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li L, Li Y, Yang CH, Radford DC, Wang J, Janát-Amsbury M, Kopeček J, Yang J. Inhibition of Immunosuppressive Tumors by Polymer-Assisted Inductions of Immunogenic Cell Death and Multivalent PD-L1 Crosslinking. Adv Funct Mater 2020;30:1908961. [PMID: 33071706 DOI: 10.1002/adfm.201908961] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 12.7] [Reference Citation Analysis]
Number Citing Articles
1 Wang H, Gao Z, Jiao D, Zhang Y, Zhang J, Wang T, Huang Y, Zheng D, Hou J, Ding D, Zhang W. A Microenvironment Dual‐Responsive Nano‐Drug Equipped with PD‐L1 Blocking Peptide Triggers Immunogenic Pyroptosis for Prostate Cancer Self‐Synergistic Immunotherapy. Adv Funct Materials 2023. [DOI: 10.1002/adfm.202214499] [Reference Citation Analysis]
2 Wu H, Wei G, Luo L, Li L, Gao Y, Tan X, Wang S, Chang H, Liu Y, Wei Y, Song J, Zhang Z, Huo J. Ginsenoside Rg3 nanoparticles with permeation enhancing based chitosan derivatives were encapsulated with doxorubicin by thermosensitive hydrogel and anti-cancer evaluation of peritumoral hydrogel injection combined with PD-L1 antibody. Biomater Res 2022;26:77. [PMID: 36494759 DOI: 10.1186/s40824-022-00329-8] [Reference Citation Analysis]
3 Feng H, Wang T, Ye J, Yang Y, Huang X, Lai D, Lv Z, Huang Y, Zhang X. SPI1 is a prognostic biomarker of immune infiltration and immunotherapy efficacy in clear cell renal cell carcinoma. Discov Oncol 2022;13:134. [PMID: 36477668 DOI: 10.1007/s12672-022-00592-0] [Reference Citation Analysis]
4 Yang S, Shim MK, Song S, Cho H, Choi J, Jeon SI, Kim WJ, Um W, Park JH, Yoon HY, Kim K. Liposome-mediated PD-L1 multivalent binding promotes the lysosomal degradation of PD-L1 for T cell-mediated antitumor immunity. Biomaterials 2022;290:121841. [DOI: 10.1016/j.biomaterials.2022.121841] [Reference Citation Analysis]
5 Liu Z, Xiang Y, Zheng Y, Kang X. Advancing immune checkpoint blockade in colorectal cancer therapy with nanotechnology. Front Immunol 2022;13:1027124. [DOI: 10.3389/fimmu.2022.1027124] [Reference Citation Analysis]
6 Zhao L, Li D, Zhang Y, Huang Q, Zhang Z, Chen C, Xu CF, Chu X, Zhang Y, Yang X. HSP70-Promoter-Driven CRISPR/Cas9 System Activated by Reactive Oxygen Species for Multifaceted Anticancer Immune Response and Potentiated Immunotherapy. ACS Nano 2022;16:13821-33. [PMID: 35993350 DOI: 10.1021/acsnano.2c01885] [Reference Citation Analysis]
7 Li J, Yan Y, Zhang P, Ding J, Huang Y, Jin Y, Li L. A cell-laden hydrogel as prophylactic vaccine and anti-PD-L1 amplifier against autologous tumors. J Control Release 2022;351:231-44. [PMID: 36122899 DOI: 10.1016/j.jconrel.2022.09.027] [Reference Citation Analysis]
8 Xiang J, Zhang Y, Liu X, Zhou Q, Piao Y, Shao S, Tang J, Zhou Z, Xie T, Shen Y. Natural Polyphenols-Platinum Nanocomplexes Stimulate Immune System for Combination Cancer Therapy. Nano Lett 2022. [PMID: 35749341 DOI: 10.1021/acs.nanolett.2c02161] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Jeon SI, Yang S, Shim MK, Kim K. Cathepsin B-responsive prodrugs for cancer-targeted therapy: Recent advances and progress for clinical translation. Nano Res . [DOI: 10.1007/s12274-022-4354-y] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Li Z, Lai X, Fu S, Ren L, Cai H, Zhang H, Gu Z, Ma X, Luo K. Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency. Adv Sci (Weinh) 2022;:e2201734. [PMID: 35652198 DOI: 10.1002/advs.202201734] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 18.0] [Reference Citation Analysis]
11 Liu C, Li L, Lyu J, Xiang Y, Chen L, Zhou Z, Huang Y. Split bullets loaded nanoparticles for amplified immunotherapy. J Control Release 2022;347:199-210. [PMID: 35550911 DOI: 10.1016/j.jconrel.2022.05.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
12 Liu Y, Liu Y, Xu D, Zang J, Zheng X, Zhao Y, Li Y, He R, Ruan S, Dong H, Gu J, Yang Y, Cheng Q, Li Y. Targeting the Negative Feedback of Adenosine-A2AR Metabolic Pathway by a Tailored Nanoinhibitor for Photothermal Immunotherapy. Adv Sci (Weinh) 2022;9:e2104182. [PMID: 35306759 DOI: 10.1002/advs.202104182] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Xiao Z, Wang D, Wang C, Chen Z, Huang C, Yang Y, Xie L, Zhang L, Xu L, Zhang M, Hu K, Li Z, Luo L. PEIGel: A biocompatible and injectable scaffold with innate immune adjuvanticity for synergized local immunotherapy. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100297] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Hu D, Zhang W, Xiang J, Li D, Chen Y, Yuan P, Shao S, Zhou Z, Shen Y, Tang J. A ROS-responsive synergistic delivery system for combined immunotherapy and chemotherapy. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100284] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Li Q, Chen C, Kong J, Li L, Li J, Huang Y. Stimuli-responsive nano vehicle enhances cancer immunotherapy by coordinating mitochondria-targeted immunogenic cell death and PD-L1 blockade. Acta Pharm Sin B 2022;12:2533-49. [PMID: 35646521 DOI: 10.1016/j.apsb.2021.11.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
16 Calvillo-rodríguez KM, Mendoza-reveles R, Gómez-morales L, Uscanga-palomeque AC, Karoyan P, Martínez-torres AC, Rodríguez-padilla C. PKHB1, a thrombospondin-1 peptide mimic, induces anti-tumor effect through immunogenic cell death induction in breast cancer cells. OncoImmunology 2022;11:2054305. [DOI: 10.1080/2162402x.2022.2054305] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Li J, Zhang P, Zhou M, Liu C, Huang Y, Li L. Trauma-Responsive Scaffold Synchronizing Oncolysis Immunization and Inflammation Alleviation for Post-Operative Suppression of Cancer Metastasis. ACS Nano 2022. [PMID: 35344338 DOI: 10.1021/acsnano.1c11562] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Pan D, Zheng X, Zhang L, Li X, Zhu G, Gong M, Kopytynski M, Zhou L, Yi Y, Zhu H, Tian X, Chen R, Zhang H, Gu Z, Gong Q, Luo K. Synergistic Disruption of Metabolic Homeostasis through Hyperbranched Poly(ethylene glycol) Conjugates as Nanotherapeutics to Constrain Cancer Growth. Adv Mater 2022;34:e2109036. [PMID: 34990517 DOI: 10.1002/adma.202109036] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
19 Kim EH, Lee J, Kwak G, Jang H, Kim H, Cho H, Jang Y, Choi J, Chi S, Kim K, Kwon IC, Yang Y, Kim SH. PDL1-binding peptide/anti-miRNA21 conjugate as a therapeutic modality for PD-L1high tumors and TAMs. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.02.031] [Reference Citation Analysis]
20 Chen L, Liu C, Xiang Y, Lyu J, Zhou Z, Gong T, Gao H, Li L, Huang Y. Exocytosis blockade of endoplasmic reticulum-targeted nanoparticle enhances immunotherapy. Nano Today 2022;42:101356. [DOI: 10.1016/j.nantod.2021.101356] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
21 Zhou M, Zuo Q, Huang Y, Li L. Immunogenic hydrogel toolkit disturbing residual tumor “seeds” and pre-metastatic “soil” for inhibition of postoperative tumor recurrence and metastasis. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.02.017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
22 Lee D, Huntoon K, Jiang W, Kim BY. Challenges and opportunities of nanotechnology in cancer immunotherapy. Engineering Technologies and Clinical Translation 2022. [DOI: 10.1016/b978-0-323-90949-5.00024-3] [Reference Citation Analysis]
23 Li Y, Tang K, Zhang X, Pan W, Li N, Tang B. A dendritic cell-like biomimetic nanoparticle enhances T cell activation for breast cancer immunotherapy. Chem Sci 2021;13:105-10. [PMID: 35059157 DOI: 10.1039/d1sc03525h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Ren H, Yong J, Yang Q, Yang Z, Liu Z, Xu Y, Wang H, Jiang X, Miao W, Li X. Self-assembled FeS-based cascade bioreactor with enhanced tumor penetration and synergistic treatments to trigger robust cancer immunotherapy. Acta Pharm Sin B 2021;11:3244-61. [PMID: 34729313 DOI: 10.1016/j.apsb.2021.05.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
25 Li Y, Liu X, Zhang X, Pan W, Li N, Tang B. Immune Cycle‐Based Strategies for Cancer Immunotherapy. Adv Funct Mater 2021;31:2107540. [DOI: 10.1002/adfm.202107540] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
26 Yang S, Sun IC, Hwang HS, Shim MK, Yoon HY, Kim K. Rediscovery of nanoparticle-based therapeutics: boosting immunogenic cell death for potential application in cancer immunotherapy. J Mater Chem B 2021;9:3983-4001. [PMID: 33909000 DOI: 10.1039/d1tb00397f] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
27 Gambles MT, Li J, Wang J, Sborov D, Yang J, Kopeček J. Crosslinking of CD38 Receptors Triggers Apoptosis of Malignant B Cells. Molecules 2021;26:4658. [PMID: 34361811 DOI: 10.3390/molecules26154658] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
28 Lee D, Huntoon K, Wang Y, Jiang W, Kim BYS. Harnessing Innate Immunity Using Biomaterials for Cancer Immunotherapy. Adv Mater 2021;33:e2007576. [PMID: 34050699 DOI: 10.1002/adma.202007576] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
29 Choi J, Shim MK, Yang S, Hwang HS, Cho H, Kim J, Yun WS, Moon Y, Kim J, Yoon HY, Kim K. Visible-Light-Triggered Prodrug Nanoparticles Combine Chemotherapy and Photodynamic Therapy to Potentiate Checkpoint Blockade Cancer Immunotherapy. ACS Nano 2021. [PMID: 34165970 DOI: 10.1021/acsnano.1c03416] [Cited by in Crossref: 38] [Cited by in F6Publishing: 44] [Article Influence: 19.0] [Reference Citation Analysis]
30 Zhou M, Luo C, Zhou Z, Li L, Huang Y. Improving anti-PD-L1 therapy in triple negative breast cancer by polymer-enhanced immunogenic cell death and CXCR4 blockade. J Control Release 2021;334:248-62. [PMID: 33915224 DOI: 10.1016/j.jconrel.2021.04.029] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
31 Fu L, Zhou X, He C. Polymeric Nanosystems for Immunogenic Cell Death-Based Cancer Immunotherapy. Macromol Biosci 2021;21:e2100075. [PMID: 33885225 DOI: 10.1002/mabi.202100075] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
32 Liu J, Li Z, Zhao D, Feng X, Wang C, Li D, Ding J. Immunogenic cell death-inducing chemotherapeutic nanoformulations potentiate combination chemoimmunotherapy. Materials & Design 2021;202:109465. [DOI: 10.1016/j.matdes.2021.109465] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
33 Jiang W, Wang L, Wang Q, Zhou H, Ma Y, Dong W, Xu H, Wang Y. Reversing Immunosuppression in Hypoxic and Immune‐Cold Tumors with Ultrathin Oxygen Self‐Supplementing Polymer Nanosheets under Near Infrared Light Irradiation. Adv Funct Mater 2021;31:2100354. [DOI: 10.1002/adfm.202100354] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
34 Huang J, Yang B, Peng Y, Huang J, Wong SHD, Bian L, Zhu K, Shuai X, Han S. Nanomedicine‐Boosting Tumor Immunogenicity for Enhanced Immunotherapy. Adv Funct Mater 2021;31:2011171. [DOI: 10.1002/adfm.202011171] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 14.5] [Reference Citation Analysis]
35 Lin X, Li L, Li S, Li Q, Xie D, Zhou M, Huang Y. Targeting the Opening of Mitochondrial Permeability Transition Pores Potentiates Nanoparticle Drug Delivery and Mitigates Cancer Metastasis. Adv Sci (Weinh) 2021;8:2002834. [PMID: 33643797 DOI: 10.1002/advs.202002834] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
36 Li Y, Li L, Wang J, Radford DC, Gu Z, Kopeček J, Yang J. Dendronized polymer conjugates with amplified immunogenic cell death for oncolytic immunotherapy. J Control Release 2021;329:1129-38. [PMID: 33098912 DOI: 10.1016/j.jconrel.2020.10.041] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
37 Kwon M, Jung H, Nam GH, Kim IS. The right Timing, right combination, right sequence, and right delivery for Cancer immunotherapy. J Control Release 2021;331:321-34. [PMID: 33434599 DOI: 10.1016/j.jconrel.2021.01.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
38 Cai S, Chen Z, Wang Y, Wang M, Wu J, Tong Y, Chen L, Lu C, Yang H. Reducing PD-L1 expression with a self-assembled nanodrug: an alternative to PD-L1 antibody for enhanced chemo-immunotherapy. Theranostics 2021;11:1970-81. [PMID: 33408792 DOI: 10.7150/thno.45777] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
39 Rütter M, Milošević N, David A. Say no to drugs: Bioactive macromolecular therapeutics without conventional drugs. J Control Release 2021;330:1191-207. [PMID: 33207257 DOI: 10.1016/j.jconrel.2020.11.026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
40 Hu D, Zhang W, Tang J, Zhou Z, Liu X, Shen Y. Improving safety of cancer immunotherapy via delivery technology. Biomaterials 2021;265:120407. [PMID: 32992118 DOI: 10.1016/j.biomaterials.2020.120407] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
41 Li H, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Functional gadolinium-based nanoscale systems for cancer theranostics. J Control Release 2021;329:482-512. [PMID: 32898594 DOI: 10.1016/j.jconrel.2020.08.064] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
42 Sun Y, Feng X, Wan C, Lovell JF, Jin H, Ding J. Role of nanoparticle-mediated immunogenic cell death in cancer immunotherapy. Asian J Pharm Sci 2021;16:129-32. [PMID: 33995609 DOI: 10.1016/j.ajps.2020.05.004] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 10.3] [Reference Citation Analysis]