BPG is committed to discovery and dissemination of knowledge
Cited by in CrossRef
For: Atsawarungruangkit A, Laoveeravat P, Promrat K. Machine learning models for predicting non-alcoholic fatty liver disease in the general United States population: NHANES database. World J Hepatol 2021; 13(10): 1417-1427 [PMID: 34786176 DOI: 10.4254/wjh.v13.i10.1417]
URL: https://www.wjgnet.com/1007-9327/full/v13/i10/1417.htm
Number Citing Articles
1
Kexing Han, Kexuan Tan, Jiapei Shen, Yuting Gu, Zilong Wang, Jiayu He, Luyang Kang, Weijie Sun, Long Gao, Yufeng Gao. Machine learning models including insulin resistance indexes for predicting liver stiffness in United States population: Data from NHANESFrontiers in Public Health 2022; 10 doi: 10.3389/fpubh.2022.1008794
2
Yuhan Deng, Yuan Ma, Jingzhu Fu, Xiaona Wang, Canqing Yu, Jun Lv, Sailimai Man, Bo Wang, Liming Li. A dynamic machine learning model for prediction of NAFLD in a health checkup population: A longitudinal studyHeliyon 2023; 9(8): e18758 doi: 10.1016/j.heliyon.2023.e18758
3
Jayashree Patil, Shwetambari Chiwhane. Advancements in Smart Computing and Information SecurityCommunications in Computer and Information Science 2024; 2037: 161 doi: 10.1007/978-3-031-58604-0_11
4
Chun-Ye Zhang, Shuai Liu, Ming Yang. Antioxidant and anti-inflammatory agents in chronic liver diseases: Molecular mechanisms and therapyWorld Journal of Hepatology 2023; 15(2): 180-200 doi: 10.4254/wjh.v15.i2.180
5
Behrooz Mamandipoor, Sarah Wernly, Georg Semmler, Maria Flamm, Christian Jung, Elmar Aigner, Christian Datz, Bernhard Wernly, Venet Osmani. Machine learning models predict liver steatosis but not liver fibrosis in a prospective cohort studyClinics and Research in Hepatology and Gastroenterology 2023; 47(7): 102181 doi: 10.1016/j.clinre.2023.102181
6
Yang-Yuan Chen, Chun-Yu Lin, Hsu-Heng Yen, Pei-Yuan Su, Ya-Huei Zeng, Siou-Ping Huang, I-Ling Liu. Machine-Learning Algorithm for Predicting Fatty Liver Disease in a Taiwanese PopulationJournal of Personalized Medicine 2022; 12(7): 1026 doi: 10.3390/jpm12071026
7
Azadeh Alizargar, Yang-Lang Chang, Mohammad Alkhaleefah, Tan-Hsu Tan. Precision Non-Alcoholic Fatty Liver Disease (NAFLD) Diagnosis: Leveraging Ensemble Machine Learning and Gender Insights for Cost-Effective DetectionBioengineering 2024; 11(6): 600 doi: 10.3390/bioengineering11060600
8
Samir Hassoun, Chiara Bruckmann, Stefano Ciardullo, Gianluca Perseghin, Francesca Di Gaudio, Francesco Broccolo. Setting up of a Machine Learning Algorithm for the Identification of Severe Liver Fibrosis Profile in the Asymptomatic Adult PopulationSSRN Electronic Journal 2022;  doi: 10.2139/ssrn.4201355
9
Samir Hassoun, Chiara Bruckmann, Stefano Ciardullo, Gianluca Perseghin, Francesca Di Gaudio, Francesco Broccolo. Setting up of a machine learning algorithm for the identification of severe liver fibrosis profile in the general US population cohortInternational Journal of Medical Informatics 2023; 170: 104932 doi: 10.1016/j.ijmedinf.2022.104932
10
Andrew D. Schreiner, Naveed Sattar. Identifying Patients with Nonalcoholic Fatty Liver Disease in Primary Care: How and for What Benefit?Journal of Clinical Medicine 2023; 12(12): 4001 doi: 10.3390/jcm12124001
11
Marinela Sînziana Tudor, Veronica Gheorman, Georgiana-Mihaela Simeanu, Adrian Dobrinescu, Vlad Pădureanu, Venera Cristina Dinescu, Mircea-Cătălin Forțofoiu. Evolutive Models, Algorithms and Predictive Parameters for the Progression of Hepatic SteatosisMetabolites 2024; 14(4): 198 doi: 10.3390/metabo14040198