BPG is committed to discovery and dissemination of knowledge
Cited by in CrossRef
For: Charilaou P, Battat R. Machine learning models and over-fitting considerations. World J Gastroenterol 2022; 28(5): 605-607 [PMID: 35316964 DOI: 10.3748/wjg.v28.i5.605]
URL: https://www.wjgnet.com/1007-9327/full/v28/i5/605.htm
Number Citing Articles
1
Ruba Sajdeya, Samer Narouze. Harnessing artificial intelligence for predicting and managing postoperative pain: a narrative literature reviewCurrent Opinion in Anaesthesiology 2024; 37(5): 604 doi: 10.1097/ACO.0000000000001408
2
Ruth Salim, Simon Husby, Christian Winther Eskelund, David W. Scott, Harald Holte, Arne Kolstad, Riikka Räty, Sara Ek, Mats Jerkeman, Christian Geisler, Lasse Sommer Kristensen, Mette Dahl, Kirsten Grønbæk. Exploring new prognostic biomarkers in Mantle Cell Lymphoma: a comparison of the circSCORE and the MCL35 scoreLeukemia & Lymphoma 2023; 64(8): 1414 doi: 10.1080/10428194.2023.2216819
3
Eric McMullen, Dharmayu Desai, Yousif Al-Naser, Jeff Donovan. Applications of Machine Learning on Alopecia Areata: A Systematic ReviewJournal of Cutaneous Medicine and Surgery 2024; 28(3): 303 doi: 10.1177/12034754241238503
4
Marc Emmenegger, Vishalini Emmenegger, Srikanth Mairpady Shambat, Thomas C. Scheier, Alejandro Gomez-Mejia, Chun-Chi Chang, Pedro D. Wendel-Garcia, Philipp K. Buehler, Thomas Buettner, Dirk Roggenbuck, Silvio D. Brugger, Katrin B.M. Frauenknecht. Antiphospholipid antibodies are enriched post-acute COVID-19 but do not modulate the thrombotic riskClinical Immunology 2023; 257: 109845 doi: 10.1016/j.clim.2023.109845
5
Pierluigi Castelli, Andrea De Ruvo, Andrea Bucciacchio, Nicola D’Alterio, Cesare Cammà, Adriano Di Pasquale, Nicolas Radomski. Harmonization of supervised machine learning practices for efficient source attribution of Listeria monocytogenes based on genomic dataBMC Genomics 2023; 24(1) doi: 10.1186/s12864-023-09667-w
6
Xiaodong Zang, Liandong Feng, Wengang Qin, Weilin Wang, Xiaowei Zang. Using machine learning methods to analyze the association between urinary polycyclic aromatic hydrocarbons and chronic bowel disorders in American adultsChemosphere 2024; 346: 140602 doi: 10.1016/j.chemosphere.2023.140602
7
Dharel P. Acut, Nolasco K. Malabago, Elesar V. Malicoban, Narcisan S. Galamiton, Manuel B. Garcia. “ChatGPT 4.0 Ghosted Us While Conducting Literature Search:” Modeling the Chatbot’s Generated Non-Existent References Using Regression AnalysisInternet Reference Services Quarterly 2024; : 1 doi: 10.1080/10875301.2024.2426793
8
Johannes Haubold, René Hosch, Gregor Jost, Felix Kreis, Michael Forsting, Hubertus Pietsch, Felix Nensa. AI as a New Frontier in Contrast Media ResearchInvestigative Radiology 2024; 59(2): 206 doi: 10.1097/RLI.0000000000001028
9
Qian Liu, Xing She, Qian Xia. AI based diagnostics product design for osteosarcoma cells microscopy imaging of bone cancer patients using CA-MobileNet V3Journal of Bone Oncology 2024; 49: 100644 doi: 10.1016/j.jbo.2024.100644
10
Emahnuel Troisi Lopez, Marianna Liparoti, Roberta Minino, Antonella Romano, Arianna Polverino, Anna Carotenuto, Domenico Tafuri, Giuseppe Sorrentino, Pierpaolo Sorrentino. Kinematic network of joint motion provides insight on gait coordination: An observational study on Parkinson's diseaseHeliyon 2024; 10(15): e35751 doi: 10.1016/j.heliyon.2024.e35751
11
Ka Siu Fan, Ka Hay Fan. Dermatological Knowledge and Image Analysis Performance of Large Language Models Based on Specialty Certificate Examination in DermatologyDermato 2024; 4(4): 124 doi: 10.3390/dermato4040013
12
Emilio Vello, Megan Letourneau, John Aguirre, Thomas E. Bureau. Integrated web portal for non-destructive salt sensitivity detection of Camelina sativa seeds using fluorescent and visible light images coupled with machine learning algorithmsFrontiers in Plant Science 2024; 14 doi: 10.3389/fpls.2023.1303429
13
M.C. Van Maaren, T.A. Hueting, D.J.P. van Uden, M. van Hezewijk, L. de Munck, M.A.M. Mureau, P.A. Seegers, Q.J.M. Voorham, M.K. Schmidt, G.S. Sonke, C.G.M. Groothuis-Oudshoorn, S. Siesling. The INFLUENCE 3.0 model: Updated predictions of locoregional recurrence and contralateral breast cancer, now also suitable for patients treated with neoadjuvant systemic therapyThe Breast 2025; 79: 103829 doi: 10.1016/j.breast.2024.103829
14
Jinfei Fan, Jiazhen Xu, Xiaobo Wen, Li Sun, Yutao Xiu, Zongying Zhang, Ting Liu, Daijun Zhang, Pan Wang, Dongming Xing. The future of bone regeneration: Artificial intelligence in biomaterials discoveryMaterials Today Communications 2024; 40: 109982 doi: 10.1016/j.mtcomm.2024.109982
15
Taira Batista Luna, Jose Luis García Bello, Agustín Garzón Carbonell, Ana de la Caridad Román Montoya, Alcibíades Lara Lafargue, Héctor Manuel Camué Ciria, Yohandys A. Zulueta. The role of various physiological and bioelectrical parameters for estimating the weight status in infants and juveniles cohort from the Southern Cuba region: a machine learning studyBMC Pediatrics 2024; 24(1) doi: 10.1186/s12887-024-04789-w
16
Yingwen Wu, Yangjian Ji. Identifying firm-specific technology opportunities from the perspective of competitors by using association rule miningJournal of Informetrics 2023; 17(2): 101398 doi: 10.1016/j.joi.2023.101398
17
Marc Bender, I.-Peng Chen, Leonie Bluhm, Peter Mohr, Beate Volkmer, Rüdiger Greinert. LASSO logistic regression reveals a mixed MiRNA and serum-marker classifier for prediction of immunotherapy response in liquid biopsies of melanoma patientsEJC Skin Cancer 2024; 2: 100260 doi: 10.1016/j.ejcskn.2024.100260
18
Kun Yang, Yuying Sun, Yongmiao Hong, Shouyang Wang. Forecasting interval carbon price through a multi-scale interval-valued decomposition ensemble approachEnergy Economics 2024; 139: 107952 doi: 10.1016/j.eneco.2024.107952
19
Jan-Mou Lee, Yi-Ping Hung, Kai-Yuan Chou, Cheng-Yun Lee, Shian-Ren Lin, Ya-Han Tsai, Wan-Yu Lai, Yu-Yun Shao, Chiun Hsu, Chih-Hung Hsu, Yee Chao. Artificial intelligence-based immunoprofiling serves as a potentially predictive biomarker of nivolumab treatment for advanced hepatocellular carcinomaFrontiers in Medicine 2022; 9 doi: 10.3389/fmed.2022.1008855
20
Cyrel Ontimare Manlises, Jeng-Wen Chen, Chih-Chung Huang. A gated recurrent unit model based on ultrasound images of dynamic tongue movement for determining the severity of obstructive sleep apneaUltrasonics 2024; 141: 107320 doi: 10.1016/j.ultras.2024.107320
21
Wentao Zhang, Wenguang Huang, Jie Tan, Dawei Huang, Jun Ma, Bingdang Wu. Modeling, optimization and understanding of adsorption process for pollutant removal via machine learning: Recent progress and future perspectivesChemosphere 2023; 311: 137044 doi: 10.1016/j.chemosphere.2022.137044
22
Shaina Smith, Sabine McConnell. The use of artificial neural networks and decision trees: Implications for health-care researchOpen Computer Science 2024; 14(1) doi: 10.1515/comp-2022-0279
23
Rui Huang, Shuangcheng Ma, Shengyun Dai, Jian Zheng. Application of Data Fusion in Traditional Chinese Medicine: A ReviewSensors 2023; 24(1): 106 doi: 10.3390/s24010106
24
Ben Li, Badr Aljabri, Raj Verma, Derek Beaton, Naomi Eisenberg, Douglas S. Lee, Duminda N. Wijeysundera, Thomas L. Forbes, Ori D. Rotstein, Charles de Mestral, Muhammad Mamdani, Graham Roche-Nagle, Mohammed Al-Omran. Using machine learning to predict outcomes following open abdominal aortic aneurysm repairJournal of Vascular Surgery 2023; 78(6): 1426 doi: 10.1016/j.jvs.2023.08.121
25
Ibrahem Albalkhi, Aashim Bhatia, Nico Lösch, Robert Goetti, Kshitij Mankad. Current state of radiomics in pediatric neuro-oncology practice: a systematic reviewPediatric Radiology 2023; 53(10): 2079 doi: 10.1007/s00247-023-05679-6
26
Hang Thi Thuy Tran, Quang Hao Nguyen, Ty Huu Pham, Giang Thi Huong Ngo, Nho Tran Dinh Pham, Tung Gia Pham, Chau Thi Minh Tran, Thang Nam Ha. Novel Learning of Bathymetry from Landsat 9 Imagery Using Machine Learning, Feature Extraction and Meta-Heuristic Optimization in a Shallow Turbid LagoonGeosciences 2024; 14(5): 130 doi: 10.3390/geosciences14050130
27
Brenda F. Narice, Mariam Labib, Mengxiao Wang, Victoria Byrne, Joanna Shepherd, Z. Q. Lang, Dilly OC Anumba. Developing a logistic regression model to predict spontaneous preterm birth from maternal socio-demographic and obstetric history at initial pregnancy registrationBMC Pregnancy and Childbirth 2024; 24(1) doi: 10.1186/s12884-024-06892-3
28
Abdul Majed Sajib, Mir Talas Mahammad Diganta, Md. Moniruzzaman, Azizur Rahman, Tomasz Dabrowski, Md Galal Uddin, Agnieszka I. Olbert. Assessing water quality of an ecologically critical urban canal incorporating machine learning approachesEcological Informatics 2024; 80: 102514 doi: 10.1016/j.ecoinf.2024.102514
29
Bing Li, Kan Tan, Angelyn R. Lao, Haiying Wang, Huiru Zheng, Le Zhang. A comprehensive review of artificial intelligence for pharmacology researchFrontiers in Genetics 2024; 15 doi: 10.3389/fgene.2024.1450529
30
Weimin Chen, Yong Han, Muhammad Awais Ashraf, Junhan Liu, Mu Zhang, Feng Su, Zhiguo Huang, Kelvin K.L. Wong. A patch-based deep learning MRI segmentation model for improving efficiency and clinical examination of the spinal tumorJournal of Bone Oncology 2024; : 100649 doi: 10.1016/j.jbo.2024.100649
31
Laily Azyan Ramlan, Wan Mimi Diyana Wan Zaki, Haliza Abdul Mutalib, Aini Hussain, Aouache Mustapha. Cataract Detection using Pupil Patch Classification and Ruled-based System in Anterior Segment Photographed Images2023 IEEE 13th Symposium on Computer Applications & Industrial Electronics (ISCAIE) 2023; : 124 doi: 10.1109/ISCAIE57739.2023.10165004
32
Lhoussaine El Mezouary, Abdessamad Hadri, Mohamed Hakim Kharrou, Younes Fakır, Abderrahman Elfarchouni, Lhoussaine Bouchaou, Abdelghani Chehbouni. Contribution to advancing aquifer geometric mapping using machine learning and deep learning techniques: a case study of the AL Haouz-Mejjate aquifer, Marrakech, MoroccoApplied Water Science 2024; 14(5) doi: 10.1007/s13201-024-02162-x
33
Yao Yao, Chuanliang Jia, Haicheng Zhang, Yakui Mou, Cai Wang, Xiao Han, Pengyi Yu, Ning Mao, Xicheng Song. Applying a nomogram based on preoperative CT to predict early recurrence of laryngeal squamous cell carcinoma after surgeryJournal of X-Ray Science and Technology 2023; 31(3): 435 doi: 10.3233/XST-221320
34
Yanan Gu, Ruyi Cao, Dong Wang, Bibo Lu. CMP-UNet: A Retinal Vessel Segmentation Network Based on Multi-Scale Feature FusionElectronics 2023; 12(23): 4743 doi: 10.3390/electronics12234743
35
Arshmeet Kaur, Morteza Sarmadi. Comparative Analysis of Machine Learning Techniques for Imbalanced Genetic DataAnnals of Data Science 2024;  doi: 10.1007/s40745-024-00575-8
36
Milad Hosseinpour, Mohammad Javad Shojaei, Mohsen Salimi, Majid Amidpour. Machine learning in absorption-based post-combustion carbon capture systems: A state-of-the-art reviewFuel 2023; 353: 129265 doi: 10.1016/j.fuel.2023.129265
37
Pradeep Kumar Hanumegowda, Sakthivel Gnanasekaran. Prediction of Work-Related Risk Factors among Bus Drivers Using Machine LearningInternational Journal of Environmental Research and Public Health 2022; 19(22): 15179 doi: 10.3390/ijerph192215179
38
Anand Kumar Pandey, Shalja Verma. Radiomics and Radiogenomics in Neuro-Oncology2024; : 211 doi: 10.1016/B978-0-443-18508-3.00005-X
39
Chenyi Zhao, Jie Zhao, Wenlei Wang, Changjiang Yuan, Jie Tang. A novel hybrid ensemble model for mineral prospectivity prediction: A case study in the Malipo W-Sn mineral district, Yunnan Province, ChinaOre Geology Reviews 2024; 168: 106001 doi: 10.1016/j.oregeorev.2024.106001
40
Abdelhady Omar, Atefeh Delnaz, Mazdak Nik-Bakht. Comparative analysis of machine learning techniques for predicting water main failures in the City of KitchenerJournal of Infrastructure Intelligence and Resilience 2023; 2(3): 100044 doi: 10.1016/j.iintel.2023.100044
41
Eric McMullen, Yousif Al-Naser, Jonathan Chung, Jensen Yeung. Machine Learning Applications in Psoriasis Treatment: A Systematic ReviewJournal of Cutaneous Medicine and Surgery 2024; 28(3): 301 doi: 10.1177/12034754241238482
42
Dongxu Yue, Runze Wang, Yanli Zhao, Bangxu Wu, Shude Li, Weilin Zeng, Shanshan Wan, Lifang Liu, Yating Dai, Yuling Shi, Ruobing Xu, Zhihong Yang, Xie Wang, Yingying Zou. Investigating the molecular mechanisms between type 1 diabetes and mild cognitive impairment using bioinformatics analysis, with a focus on immune responseInternational Immunopharmacology 2024; 142: 113256 doi: 10.1016/j.intimp.2024.113256
43
Muhammad Ali Martuza, Md. Shafiquzzaman, Husnain Haider, Amimul Ahsan, Abdelkader T. Ahmed. Predicting removal of arsenic from groundwater by iron based filters using deep neural network modelsScientific Reports 2024; 14(1) doi: 10.1038/s41598-024-76758-3
44
Michal Pruski. What does it mean for a clinical AI to be just: conflicts between local fairness and being fit-for-purpose?Journal of Medical Ethics 2024; : jme-2023-109675 doi: 10.1136/jme-2023-109675
45
Stephan Peronard Mayntz. Enhancing Predictive Models for Mortality in Heart Failure Patients with Clostridioides difficile InfectionCardiology 2024; : 1 doi: 10.1159/000542319
46
Chaitanya Baliram Pande, Johnbosco C. Egbueri, Romulus Costache, Lariyah Mohd Sidek, Qingzheng Wang, Fahad Alshehri, Norashidah Md Din, Vinay Kumar Gautam, Subodh Chandra Pal. Predictive modeling of land surface temperature (LST) based on Landsat-8 satellite data and machine learning models for sustainable developmentJournal of Cleaner Production 2024; 444: 141035 doi: 10.1016/j.jclepro.2024.141035
47
Andreas Fontalis, Baixiang Zhao, Pierre Putzeys, Fabio Mancino, Shuai Zhang, Thomas Vanspauwen, Fabrice Glod, Ricci Plastow, Evangelos Mazomenos, Fares S. Haddad. Is it feasible to develop a supervised learning algorithm incorporating spinopelvic mobility to predict impingement in patients undergoing total hip arthroplasty?Bone & Joint Open 2024; 5(8): 671 doi: 10.1302/2633-1462.58.BJO-2024-0020.R1
48
Giulio Antonelli, Diogo Libanio, Albert Jeroen De Groof, Fons van der Sommen, Pietro Mascagni, Pieter Sinonquel, Mohamed Abdelrahim, Omer Ahmad, Tyler Berzin, Pradeep Bhandari, Michael Bretthauer, Miguel Coimbra, Evelien Dekker, Alanna Ebigbo, Tom Eelbode, Leonardo Frazzoni, Seth A Gross, Ryu Ishihara, Michal Filip Kaminski, Helmut Messmann, Yuichi Mori, Nicolas Padoy, Sravanthi Parasa, Nastazja Dagny Pilonis, Francesco Renna, Alessandro Repici, Cem Simsek, Marco Spadaccini, Raf Bisschops, Jacques J G H M Bergman, Cesare Hassan, Mario Dinis Ribeiro. QUAIDE - Quality assessment of AI preclinical studies in diagnostic endoscopyGut 2024; : gutjnl-2024-332820 doi: 10.1136/gutjnl-2024-332820
49
Miroslav Stojadinovic, Bogdan Milicevic, Slobodan Jankovic. Enhanced PSA Density Prediction Accuracy When Based on Machine LearningJournal of Medical and Biological Engineering 2023; 43(3): 249 doi: 10.1007/s40846-023-00793-0
50
Ju Zhou, Feiyi Li, Xinwu Wang, Heng Yin, Wenjing Zhang, Jiaoyang Du, Haibo Pu. Hyperspectral and Fluorescence Imaging Approaches for Nondestructive Detection of Rice ChlorophyllPlants 2024; 13(9): 1270 doi: 10.3390/plants13091270
51
Miguel Ángel Jiménez García, Richard de Jesús Gil Herrera. Good Practices and New Perspectives in Information Systems and TechnologiesLecture Notes in Networks and Systems 2024; 987: 389 doi: 10.1007/978-3-031-60221-4_37
52
Yiheng Shi, Haohan Fan, Li Li, Yaqi Hou, Feifei Qian, Mengting Zhuang, Bei Miao, Sujuan Fei. The value of machine learning approaches in the diagnosis of early gastric cancer: a systematic review and meta-analysisWorld Journal of Surgical Oncology 2024; 22(1) doi: 10.1186/s12957-024-03321-9
53
Jovitha Wilson, Seyed Ebrahim Hosseini, Shahbaz Pervez. Identification of Fake News in Social Media Using Sentimental Analysis2023 IEEE Industrial Electronics and Applications Conference (IEACon) 2023; : 220 doi: 10.1109/IEACon57683.2023.10370300
54
Nipun Verma, Arka De, Ajay Duseja. Editorial: Using machine learning to predict significant fibrosis in metabolic dysfunction‐associated steatotic liver disease—authors' replyAlimentary Pharmacology & Therapeutics 2024; 59(7): 896 doi: 10.1111/apt.17913
55
Shaodong Zheng, Lin Jing, Kai Liu, Zhenhao Yu, Zhao Tang, Kaiyun Wang. Crash energy management optimization of high-speed trains by machine learning methodsInternational Journal of Mechanical Sciences 2024; 270: 109108 doi: 10.1016/j.ijmecsci.2024.109108
56
Xin Jin, Keke Qiao, Mohua Bu, Jiamin Wang, Meng Wang, Cheng Fang. Intelligent safety evaluation of tunnel lining cracks based on machine learningEngineering Failure Analysis 2025; 167: 109082 doi: 10.1016/j.engfailanal.2024.109082
57
Alvaro Ras-Carmona, Alexander A. Lehmann, Paul V. Lehmann, Pedro A. Reche. Prediction of B cell epitopes in proteins using a novel sequence similarity-based methodScientific Reports 2022; 12(1) doi: 10.1038/s41598-022-18021-1
58
Arihant Singh, Vivek R Velagala, Tanishq Kumar, Rajoshee R Dutta, Tushar Sontakke. The Application of Deep Learning to Electroencephalograms, Magnetic Resonance Imaging, and Implants for the Detection of Epileptic Seizures: A Narrative ReviewCureus 2023;  doi: 10.7759/cureus.42460
59
Matthew I. Miller, Ludy C. Shih, Vijaya B. Kolachalama. Machine Learning in Clinical Trials: A Primer with Applications to NeurologyNeurotherapeutics 2023; 20(4): 1066 doi: 10.1007/s13311-023-01384-2
60
Zaid Alhulaybi, Muhammad Martuza, Sayeed Rushd. Modeling the Mechanical Properties of a Polymer-Based Mixed-Matrix Membrane Using Deep Learning Neural NetworksChemEngineering 2023; 7(5): 80 doi: 10.3390/chemengineering7050080
61
José Luis García Bello, Taira Batista Luna, Agustín Garzón Carbonell, Ana de la Caridad Román Montoya, Alcibíades Lara Lafargue, Héctor Manuel Camué Ciria, Yohandys A. Zulueta. Cancer predictive model derived from bioimpedance measurements using machine learning methodsClinical Nutrition Open Science 2024; 58: 131 doi: 10.1016/j.nutos.2024.10.006
62
Rushad Patell, Jeffrey I. Zwicker, Rohan Singh, Simon Mantha. Machine learning in cancer-associated thrombosis: hype or hope in untangling the clotBleeding, Thrombosis and Vascular Biology 2024; 3(s1) doi: 10.4081/btvb.2024.123
63
Avi Gupta, Thor S. Stead, Latha Ganti. Determining a Meaningful R-squared Value in Clinical MedicineAcademic Medicine & Surgery 2024;  doi: 10.62186/001c.125154
64
Matthew T. Carr, Ashwin Ghadiyaram, Asha Krishnakumar, Hayden M. Dux, Jacob T. Hall, Charles F. Opalak, Adam P. Sima, Timothy J. Harris, William C. Broaddus. Mathematical modeling of meningioma volume change after radiation treatmentClinical Neurology and Neurosurgery 2024; 245: 108513 doi: 10.1016/j.clineuro.2024.108513