For: | Yang N, Shi JJ, Wu FP, Li M, Zhang X, Li YP, Zhai S, Jia XL, Dang SS. Caffeic acid phenethyl ester up-regulates antioxidant levels in hepatic stellate cell line T6 via an Nrf2-mediated mitogen activated protein kinases pathway. World J Gastroenterol 2017; 23(7): 1203-1214 [PMID: 28275300 DOI: 10.3748/wjg.v23.i7.1203] |
---|---|
URL: | https://www.wjgnet.com/1007-9327/full/v23/i7/1203.htm |
Number | Citing Articles |
1 |
Eleftheria M. Mastoridou, Anna C. Goussia, Georgios K. Glantzounis, Panagiotis Kanavaros, Antonia V. Charchanti. Autophagy and Exosomes: Cross-Regulated Pathways Playing Major Roles in Hepatic Stellate Cells Activation and Liver Fibrosis. Frontiers in Physiology 2022; 12 doi: 10.3389/fphys.2021.801340
|
2 |
Lili Lv, Honghua Cui, Zhiming Ma, Xin Liu, Longfei Yang. Recent progresses in the pharmacological activities of caffeic acid phenethyl ester. Naunyn-Schmiedeberg's Archives of Pharmacology 2021; 394(7): 1327 doi: 10.1007/s00210-021-02054-w
|
3 |
Shengnan Li, Rong Wang, Fuxing Song, Panpan Chen, Yanqiu Gu, Chun Chen, Yongfang Yuan. Salvianolic acid A suppresses CCl4-induced liver fibrosis through regulating the Nrf2/HO-1, NF-κB/IκBα, p38 MAPK, and JAK1/STAT3 signaling pathways. Drug and Chemical Toxicology 2023; 46(2): 304 doi: 10.1080/01480545.2022.2028822
|
4 |
E. Prades-Sagarra, F. Laarakker, J. Dissy, N.G. Lieuwes, R. Biemans, M. Dubail, C. Fouillade, A. Yaromina, L.J. Dubois. Caffeic Acid Phenethyl Ester (CAPE), a natural polyphenol to increase the therapeutic window for lung adenocarcinomas. Radiotherapy and Oncology 2024; 190: 110021 doi: 10.1016/j.radonc.2023.110021
|
5 |
Bo-Hyun Lee, Hyeon-Son Choi, Jungil Hong. Roles of anti- and pro-oxidant potential of cinnamic acid and phenylpropanoid derivatives in modulating growth of cultured cells. Food Science and Biotechnology 2022; 31(4): 463 doi: 10.1007/s10068-022-01042-x
|
6 |
Anna Kleczka, Robert Kubina, Radosław Dzik, Krzysztof Jasik, Jerzy Stojko, Krzysztof Cholewa, Agata Kabała-Dzik. Caffeic Acid Phenethyl Ester (CAPE) Induced Apoptosis in Serous Ovarian Cancer OV7 Cells by Deregulation of BCL2/BAX Genes. Molecules 2020; 25(15): 3514 doi: 10.3390/molecules25153514
|
7 |
Adam J. Lewis, Amanda C. Richards, Alejandra A. Mendez, Bijaya K. Dhakal, Tiffani A. Jones, Jamie L. Sundsbak, Danelle S. Eto, Alexis A. Rousek, Matthew A. Mulvey, Andreas J. Bäumler.
Plant phenolics inhibit focal adhesion kinase and suppress host cell invasion by uropathogenic
Escherichia coli
. Infection and Immunity 2024; 92(5) doi: 10.1128/iai.00080-24
|
8 |
Èlia Prades-Sagarra, Ala Yaromina, Ludwig J. Dubois. Polyphenols as Potential Protectors against Radiation-Induced Adverse Effects in Patients with Thoracic Cancer. Cancers 2023; 15(9): 2412 doi: 10.3390/cancers15092412
|
9 |
Jun Wang, Haobo Zhu, Liqu Huang, Xiaojiang Zhu, Jintong Sha, Guogen Li, Geng Ma, Wei Zhang, Min Gu, Yunfei Guo. Nrf2 signaling attenuates epithelial-to-mesenchymal transition and renal interstitial fibrosis via PI3K/Akt signaling pathways. Experimental and Molecular Pathology 2019; 111: 104296 doi: 10.1016/j.yexmp.2019.104296
|
10 |
Alexandra Zisser, David H. Ipsen, Pernille Tveden-Nyborg. Hepatic Stellate Cell Activation and Inactivation in NASH-Fibrosis—Roles as Putative Treatment Targets?. Biomedicines 2021; 9(4): 365 doi: 10.3390/biomedicines9040365
|
11 |
Nancy Nabil Shahin, Rehab Nabil Shamma, Iman Saad Ahmed. A Nano-Liposomal Formulation of Caffeic Acid Phenethyl Ester Modulates Nrf2 and NF-κβ Signaling and Alleviates Experimentally Induced Acute Pancreatitis in a Rat Model. Antioxidants 2022; 11(8): 1536 doi: 10.3390/antiox11081536
|
12 |
Selma Cirrik, Emel Kabartan Cokelİ, Emine Gulceri Gulec Peker, Gulay Hacioglu. The effects of propolis on doxorubicin-induced hepatorenal damage: a comparison of ethanolic and oily extracts of propolis. CyTA - Journal of Food 2023; 21(1): 666 doi: 10.1080/19476337.2023.2274370
|
13 |
Ming Lu, Yi Dai, Miao Xu, Chi Zhang, Yuhong Ma, Ping Gao, Mengying Teng, Kailin Jiao, Guangming Huang, Jianping Zhang, Ye Yang, Zhiping Chu. The Attenuation of 14-3-3ζ is Involved in the Caffeic Acid-Blocked Lipopolysaccharide-Stimulated Inflammatory Response in RAW264.7 Macrophages. Inflammation 2017; 40(5): 1753 doi: 10.1007/s10753-017-0618-1
|
14 |
Ying Lu, Luyan Gao, Wenwen Zhang, Ying Zeng, Ji Hu, Kai Song. Caffeic acid phenethyl ester restores mitochondrial homeostasis against peritoneal fibrosis induced by peritoneal dialysis through the AMPK/SIRT1 pathway. Renal Failure 2024; 46(1) doi: 10.1080/0886022X.2024.2350235
|
15 |
Effects of caffeic acid phenethyl ester in reducing cerebral edema in rat subjects experiencing brain injury: An in vivo study. Annals of Medicine and Surgery 2020; 57: 328 doi: 10.1016/j.amsu.2020.08.016
|
16 |
Qiannan Ren, Qiming Sun, Junfen Fu. Dysfunction of autophagy in high-fat diet-induced non-alcoholic fatty liver disease. Autophagy 2024; 20(2): 221 doi: 10.1080/15548627.2023.2254191
|
17 |
Lihua Qiu, Zhaoxia Ma, Jianxiu Sun, Zhen Wu, Mengting Wang, Sitao Wang, Yunhui Zhao, Shu Liang, Min Hu, Yanjiao Li. Establishment of a Spontaneous Liver Fibrosis Model in NOD/SCID Mice Induced by Natural Aging. Biology 2023; 12(12): 1493 doi: 10.3390/biology12121493
|