For: | Xu Q, Li Y, Shang YF, Wang HL, Yao MX. miRNA-103: Molecular link between insulin resistance and nonalcoholic fatty liver disease. World J Gastroenterol 2015; 21(2): 511-516 [PMID: 25593466 DOI: 10.3748/wjg.v21.i2.511] |
---|---|
URL: | https://www.wjgnet.com/1007-9327/full/v21/i2/511.htm |
Number | Citing Articles |
1 |
Nabil Foudi, Samuel Legeay. Effects of physical activity on cell‐to‐cell communication during type 2 diabetes: A focus on miRNA signaling. Fundamental & Clinical Pharmacology 2021; 35(5): 808 doi: 10.1111/fcp.12665
|
2 |
Wei-Ming Chen, Wayne H-H Sheu, Pei-Chi Tseng, Tzong-Shyuan Lee, Wen-Jane Lee, Pey-Jium Chang, An-Na Chiang, Nicola Amodio. Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins. PLOS ONE 2016; 11(5): e0154672 doi: 10.1371/journal.pone.0154672
|
3 |
Yaron Rotman, Arun J Sanyal. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut 2017; 66(1): 180 doi: 10.1136/gutjnl-2016-312431
|
4 |
Tie Fang, Jianjun Li, Xianjiang Wu. Shenmai injection improves the postoperative immune function of papillary thyroid carcinoma patients by inhibiting differentiation into Treg cells via miR‐103/GPER1 axis. Drug Development Research 2018; 79(7): 324 doi: 10.1002/ddr.21459
|
5 |
Xiaofang Zhang, Eralda Asllanaj, Masoud Amiri, Eliana Portilla‐Fernandez, Wichor M. Bramer, Jana Nano, Trudy Voortman, Qiuwei Pan, Mohsen Ghanbari. Deciphering the role of epigenetic modifications in fatty liver disease: A systematic review. European Journal of Clinical Investigation 2021; 51(5) doi: 10.1111/eci.13479
|
6 |
H. Wang, L. Liu, X. Liu, M. Zhang, X. Li. Correlation between miRNAs and target genes in response to Campylobacter jejuni inoculation in chicken. Poultry Science 2018; 97(2): 485 doi: 10.3382/ps/pex343
|
7 |
Tanapa Suksangrat, Phatchariya Phannasil, Sarawut Jitrapakdee. Reviews on Biomarker Studies of Metabolic and Metabolism-Related Disorders. Advances in Experimental Medicine and Biology 2019; 1134: 129 doi: 10.1007/978-3-030-12668-1_7
|
8 |
Kaifeng Chu, Jie Gu. microRNA-103a-3p promotes inflammation and fibrosis in nonalcoholic fatty liver disease by targeting HBP1. Immunopharmacology and Immunotoxicology 2022; 44(6): 993 doi: 10.1080/08923973.2022.2102988
|
9 |
Hao Yang Sun, Ai Xin Gu, Bi Ying Huang, Tong Zhang, Jian Ping Li, An Shan Shan. Dietary Grape Seed Proanthocyanidin Alleviates the Liver Injury Induced by Long-Term High-Fat Diets in Sprague Dawley Rats. Frontiers in Veterinary Science 2022; 9 doi: 10.3389/fvets.2022.959906
|
10 |
Xiyan Liu, Huayi Sun, Lixia Zheng, Jian Zhang, Han Su, Bingjie Li, Qianhui Wu, Yunchan Liu, Yingxi Xu, Xiaoyu Song, Yang Yu. Adipose‐derived miRNAs as potential biomarkers for predicting adulthood obesity and its complications: A systematic review and bioinformatic analysis. Obesity Reviews 2024; 25(7) doi: 10.1111/obr.13748
|
11 |
Chang-Hai Liu, Javier Ampuero, Antonio Gil-Gómez, Rocío Montero-Vallejo, Ángela Rojas, Rocío Muñoz-Hernández, Rocío Gallego-Durán, Manuel Romero-Gómez. miRNAs in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis. Journal of Hepatology 2018; 69(6): 1335 doi: 10.1016/j.jhep.2018.08.008
|
12 |
Xuefeng An, Hong Quan, Jinhui Lv, Lingyu Meng, Cheng Wang, Zuoren Yu, Jing Han. Serum microRNA as Potential Biomarker to Detect Breast Atypical Hyperplasia and Early-Stage Breast Cancer. Future Oncology 2018; 14(30): 3145 doi: 10.2217/fon-2018-0334
|
13 |
Qiaozhu Su, Virender Kumar, Neetu Sud, Ram I. Mahato. MicroRNAs in the pathogenesis and treatment of progressive liver injury in NAFLD and liver fibrosis. Advanced Drug Delivery Reviews 2018; 129: 54 doi: 10.1016/j.addr.2018.01.009
|
14 |
Dan Ye, Tianbao Zhang, Guohua Lou, Weiwei Xu, Fengqin Dong, Guoping Chen, Yanning Liu. Plasma miR-17, miR-20a, miR-20b and miR-122 as potential biomarkers for diagnosis of NAFLD in type 2 diabetes mellitus patients. Life Sciences 2018; 208: 201 doi: 10.1016/j.lfs.2018.07.029
|
15 |
Ruixian Huang, Xiaoyan Duan, Jangao Fan, Guangming Li, Baocan Wang. Role of Noncoding RNA in Development of Nonalcoholic Fatty Liver Disease. BioMed Research International 2019; 2019: 1 doi: 10.1155/2019/8690592
|
16 |
Bruno de Souza Goncalves, Avery Meadows, Duane G. Pereira, Raghav Puri, Sneha S. Pillai. Insight into the Inter-Organ Crosstalk and Prognostic Role of Liver-Derived MicroRNAs in Metabolic Disease Progression. Biomedicines 2023; 11(6): 1597 doi: 10.3390/biomedicines11061597
|
17 |
Jorge-Luis Torres, Ignacio Novo-Veleiro, Laura Manzanedo, Lucía Alvela-Suárez, Ronald Macías, Francisco-Javier Laso, Miguel Marcos. Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease. World Journal of Gastroenterology 2018; 24(36): 4104-4118 doi: 10.3748/wjg.v24.i36.4104
|
18 |
Sara Carpi, Simona Daniele, Jacqueline Fátima Martins de Almeida, Daniela Gabbia. Recent Advances in miRNA-Based Therapy for MASLD/MASH and MASH-Associated HCC. International Journal of Molecular Sciences 2024; 25(22): 12229 doi: 10.3390/ijms252212229
|
19 |
Xiaojing Hu, Liyi Chi, Wentao Zhang, Tiao Bai, Wei Zhao, Zhanbin Feng, Hongyan Tian. Down-regulation of the miR-543 alleviates insulin resistance through targeting the SIRT1. Biochemical and Biophysical Research Communications 2015; 468(4): 781 doi: 10.1016/j.bbrc.2015.11.032
|
20 |
Xin Chen, Ruirui Wu, Hengchao Wu, Yuxin Hu, Huihui Wang, Jingqi Fu, Jingbo Pi, Yuanyuan Xu. Integrated miRNA-mRNA analysis reveals the dysregulation of lipid metabolism in mouse liver induced by developmental arsenic exposure. Journal of Hazardous Materials 2023; 445: 130459 doi: 10.1016/j.jhazmat.2022.130459
|
21 |
Yu Zhang, Xinghui Sun, Basak Icli, Mark W. Feinberg. Emerging Roles for MicroRNAs in Diabetic Microvascular Disease: Novel Targets for Therapy. Endocrine Reviews 2017; 38(2): 145 doi: 10.1210/er.2016-1122
|
22 |
Gene Qian, Núria Morral. Role of non-coding RNAs on liver metabolism and NAFLD pathogenesis. Human Molecular Genetics 2022; 31(R1): R4 doi: 10.1093/hmg/ddac088
|
23 |
Mai Thi Nguyen, Wan Lee. Saturated fatty acid-inducible miR-103-3p impairs the myogenic differentiation of progenitor cells by enhancing cell proliferation through Twinfilin-1/F-actin/YAP1 axis. The Korean Journal of Physiology & Pharmacology 2023; 27(3): 277 doi: 10.4196/kjpp.2023.27.3.277
|
24 |
Muhammad Amjad Pervez, Dilshad Ahmed Khan, Sayed Tanveer Abbas Gilani, Safia Fatima, Aamir Ijaz, Sumbal Nida. Hepato-Protective Effects of Delta-Tocotrienol and Alpha-Tocopherol in Patients with Non-Alcoholic Fatty Liver Disease: Regulation of Circulating MicroRNA Expression. International Journal of Molecular Sciences 2022; 24(1): 79 doi: 10.3390/ijms24010079
|
25 |
Hao Lv, Huashan Yang, Yuanrui Wang, Gianpaolo Papaccio. Effects of miR-103 by negatively regulating SATB2 on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells. PLOS ONE 2020; 15(5): e0232695 doi: 10.1371/journal.pone.0232695
|
26 |
Thomas H. Thatcher, Collynn F. Woeller, Juilee Thakar, Atif Khan, Philip K. Hopke, Matthew Ryan Smith, Karan Uppal, Douglas I. Walker, Young-Mi Go, Dean P. Jones, Pamela L. Krahl, Timothy M. Mallon, Patricia J. Sime, Richard P. Phipps, Mark J. Utell. Analysis of Postdeployment Serum Samples Identifies Potential Biomarkers of Exposure to Burn Pits and Other Environmental Hazards. Journal of Occupational & Environmental Medicine 2019; 61(Supplement 12): S45 doi: 10.1097/JOM.0000000000001715
|
27 |
Linyuan Shen, Mailin Gan, Qiang Li, Jinyong Wang, Xuewei Li, Shunhua Zhang, Li Zhu. MicroRNA-200b regulates preadipocyte proliferation and differentiation by targeting KLF4. Biomedicine & Pharmacotherapy 2018; 103: 1538 doi: 10.1016/j.biopha.2018.04.170
|
28 |
Siti Aishah Sulaiman, Nor I. A. Muhsin, Rahman Jamal. Regulatory Non-coding RNAs Network in Non-alcoholic Fatty Liver Disease. Frontiers in Physiology 2019; 10 doi: 10.3389/fphys.2019.00279
|
29 |
Ulas Emre Akbulut. Biomarkers in Nutrition. Biomarkers in Disease: Methods, Discoveries and Applications 2022; : 1 doi: 10.1007/978-3-030-81304-8_30-1
|
30 |
Sharmin Akter. Non-alcoholic Fatty Liver Disease and Steatohepatitis: Risk Factors and Pathophysiology. Middle East Journal of Digestive Diseases 2022; 14(2): 167 doi: 10.34172/mejdd.2022.270
|
31 |
Xiao Lin Liu, Hai Xia Cao, Jian Gao Fan. MicroRNAs as biomarkers and regulators of nonalcoholic fatty liver disease. Journal of Digestive Diseases 2016; 17(11): 708 doi: 10.1111/1751-2980.12408
|
32 |
Rukshar Khan, Amit Kumar Verma, Malabika Datta. mir-98-5p regulates gluconeogenesis and lipogenesis by targeting PPP1R15B in hepatocytes. Journal of Cell Communication and Signaling 2023; 17(3): 881 doi: 10.1007/s12079-023-00735-0
|
33 |
Matthew J Watt, Paula M Miotto, William De Nardo, Magdalene K Montgomery. The Liver as an Endocrine Organ—Linking NAFLD and Insulin Resistance. Endocrine Reviews 2019; 40(5): 1367 doi: 10.1210/er.2019-00034
|
34 |
Xiaopeng Zhu, Mingfeng Xia, Xin Gao. Update on genetics and epigenetics in metabolic associated fatty liver disease. Therapeutic Advances in Endocrinology and Metabolism 2022; 13 doi: 10.1177/20420188221132138
|
35 |
Bingguo Luan, Caixia Sun. MiR-138-5p affects insulin resistance to regulate type 2 diabetes progression through inducing autophagy in HepG2 cells by regulating SIRT1. Nutrition Research 2018; 59: 90 doi: 10.1016/j.nutres.2018.05.001
|
36 |
Rebeca Escutia-Gutiérrez, J. Samael Rodríguez-Sanabria, C. Alejandra Monraz-Méndez, Jesús García-Bañuelos, Arturo Santos-García, Ana Sandoval-Rodríguez, Juan Armendáriz-Borunda. Pirfenidone modifies hepatic miRNAs expression in a model of MAFLD/NASH. Scientific Reports 2021; 11(1) doi: 10.1038/s41598-021-91187-2
|
37 |
Yajie Xu, Xue Li, Hui Wang. Protective Roles of Apigenin Against Cardiometabolic Diseases: A Systematic Review. Frontiers in Nutrition 2022; 9 doi: 10.3389/fnut.2022.875826
|
38 |
Ulas Emre Akbulut. Biomarkers in Nutrition. Biomarkers in Disease: Methods, Discoveries and Applications 2022; : 517 doi: 10.1007/978-3-031-07389-2_30
|
39 |
Jiawei Mu, Ping Yu, Qiang Li. microRNA-103 Contributes to Progression of Polycystic Ovary Syndrome Through Modulating the IRS1/PI3K/AKT Signal Axis. Archives of Medical Research 2021; 52(5): 494 doi: 10.1016/j.arcmed.2021.01.008
|
40 |
Q. Ling, H. Xie, J. Li, J. Liu, J. Cao, F. Yang, C. Wang, Q. Hu, X. Xu, S. Zheng. Donor Graft MicroRNAs: A Newly Identified Player in the Development of New-onset Diabetes After Liver Transplantation. American Journal of Transplantation 2017; 17(1): 255 doi: 10.1111/ajt.13984
|
41 |
Monica J. Hubal, Evan P. Nadler, Sarah C. Ferrante, Matthew D. Barberio, Jung‐Hyuk Suh, Justin Wang, G. Lynis Dohm, Walter J. Pories, Michelle Mietus‐Snyder, Robert J. Freishtat. Circulating adipocyte‐derived exosomal MicroRNAs associated with decreased insulin resistance after gastric bypass. Obesity 2017; 25(1): 102 doi: 10.1002/oby.21709
|
42 |
Asahiro Morishita, Kyoko Oura, Tomoko Tadokoro, Koji Fujita, Joji Tani, Hideki Kobara, Masafumi Ono, Takashi Himoto, Tsutomu Masaki. MicroRNAs and Nonalcoholic Steatohepatitis: A Review. International Journal of Molecular Sciences 2023; 24(19): 14482 doi: 10.3390/ijms241914482
|
43 |
Andrea Jaeger, Lukas Zollinger, Christoph H. Saely, Axel Muendlein, Ioannis Evangelakos, Dimitris Nasias, Nikoleta Charizopoulou, Jonathan D. Schofield, Alaa Othman, Handrean Soran, Dimitris Kardassis, Heinz Drexel, Arnold von Eckardstein. Circulating microRNAs -192 and -194 are associated with the presence and incidence of diabetes mellitus. Scientific Reports 2018; 8(1) doi: 10.1038/s41598-018-32274-9
|
44 |
Yuanyuan Wang, Xue Zhao, Liuchao Zhang, Chunxiao Yang, Kening Zhang, Zhuo Gu, Haiyan Ding, Shuangshuang Li, Jian Qin, Xia Chu. MicroRNA-34a Mediates High-Fat-Induced Hepatic Insulin Resistance by Targeting ENO3. Nutrients 2023; 15(21): 4616 doi: 10.3390/nu15214616
|
45 |
Yu Zhang, Xinghui Sun, Basak Icli, Mark W. Feinberg. Emerging Roles for MicroRNAs in Diabetic Microvascular Disease: Novel Targets for Therapy. Endocrine Reviews 2017; 2017(1): 1 doi: 10.1210/er.2016-1122.2017.1.test
|
46 |
Chenggui Miao, Zhongwen Xie, Jun Chang. Critical Roles of microRNAs in the Pathogenesis of Fatty Liver: New Advances, Challenges, and Potential Directions. Biochemical Genetics 2018; 56(5): 423 doi: 10.1007/s10528-018-9870-9
|
47 |
Yuxiang Huang, Yuxiang Yan, Weicheng Xv, Ge Qian, Chijian Li, Hequn Zou, Yongqiang Li. A New Insight into the Roles of MiRNAs in Metabolic Syndrome. BioMed Research International 2018; 2018: 1 doi: 10.1155/2018/7372636
|
48 |
Zhichao Liu, Yuping Wang, Jürgen Borlak, Weida Tong. Mechanistically linked serum miRNAs distinguish between drug induced and fatty liver disease of different grades. Scientific Reports 2016; 6(1) doi: 10.1038/srep23709
|