For: | Sun K, Deng HJ, Lei ST, Dong JQ, Li GX. miRNA-338-3p suppresses cell growth of human colorectal carcinoma by targeting smoothened. World J Gastroenterol 2013; 19(14): 2197-2207 [PMID: 23599646 DOI: 10.3748/wjg.v19.i14.2197] |
---|---|
URL: | https://www.wjgnet.com/1007-9327/full/v19/i14/2197.htm |
Number | Citing Articles |
1 |
Zanyar HajiEsmailPoor, Peyman Tabnak, Behnam Ahmadzadeh, Seyedeh Sanaz Ebrahimi, Bahareh Faal, Noushin Mashatan. Role of hedgehog signaling related non-coding RNAs in developmental and pathological conditions. Biomedicine & Pharmacotherapy 2022; 153: 113507 doi: 10.1016/j.biopha.2022.113507
|
2 |
Qian Yi, Hanwei Cui, Yi Liao, Jianyi Xiong, Xiufeng Ye, Weichao Sun. A minor review of microRNA-338 exploring the insights of its function in tumorigenesis. Biomedicine & Pharmacotherapy 2021; 139: 111720 doi: 10.1016/j.biopha.2021.111720
|
3 |
YING SHAN, XINGYU LI, BO YOU, SI SHI, QICHENG ZHANG, YIWEN YOU. MicroRNA-338 inhibits migration and proliferation by targeting hypoxia-induced factor 1α in nasopharyngeal carcinoma. Oncology Reports 2015; 34(4): 1943 doi: 10.3892/or.2015.4195
|
4 |
Riliang Cao, Jianli Shao, Yabin Hu, Liang Wang, Zhizhong Li, Guodong Sun, Xiaoliang Gao. microRNA-338-3p inhibits proliferation, migration, invasion, and EMT in osteosarcoma cells by targeting activator of 90 kDa heat shock protein ATPase homolog 1. Cancer Cell International 2018; 18(1) doi: 10.1186/s12935-018-0551-x
|
5 |
Ulf Hammerling, Jonas Bergman Laurila, Roland Grafström, Nils-Gunnar Ilbäck. Consumption of Red/Processed Meat and Colorectal Carcinoma: Possible Mechanisms Underlying the Significant Association. Critical Reviews in Food Science and Nutrition 2016; 56(4): 614 doi: 10.1080/10408398.2014.972498
|
6 |
Zhengwei Xu, Chen Huang, Dingjun Hao. MicroRNA-1271 inhibits proliferation and promotes apoptosis of multiple myeloma cells through inhibiting smoothened-mediated Hedgehog signaling pathway. Oncology Reports 2017; 37(2): 1261 doi: 10.3892/or.2016.5304
|
7 |
Xiuning Sun, Lihong Shi, Haoyun Zhang, Ruifang Li, Ruiwen Liang, Zhijun Liu. Effects of toll-like receptor 3 on herpes simplex virus type-1-infected mouse neural stem cells. Canadian Journal of Microbiology 2015; 61(3): 201 doi: 10.1139/cjm-2014-0540
|
8 |
Wei Zhang, Bo Wang, Quan Wang, Zhen Zhang, Zhanlong Shen, Yingjiang Ye, Kewei Jiang, Shan Wang. Lnc-HSD17B11-1:1 Functions as a Competing Endogenous RNA to Promote Colorectal Cancer Progression by Sponging miR-338-3p to Upregulate MACC1. Frontiers in Genetics 2020; 11 doi: 10.3389/fgene.2020.00628
|
9 |
Raheleh Amirkhah, Ulf Schmitz, Michael Linnebacher, Olaf Wolkenhauer, Ali Farazmand. MicroRNA–mRNA interactions in colorectal cancer and their role in tumor progression. Genes, Chromosomes and Cancer 2015; 54(3): 129 doi: 10.1002/gcc.22231
|
10 |
YING JIN, MIN ZHAO, QIAN XIE, HONGYAN ZHANG, QING WANG, QINGJIE MA. MicroRNA-338-3p functions as tumor suppressor in breast cancer by targeting SOX4. International Journal of Oncology 2015; 47(4): 1594 doi: 10.3892/ijo.2015.3114
|
11 |
De-Zhi Liu, Hui Zhao, Qin-Guang Zou, Qing-Jie Ma. MiR-338 suppresses cell proliferation and invasion by targeting CTBP2 in glioma. Cancer Biomarkers 2017; 20(3): 289 doi: 10.3233/CBM-170128
|
12 |
Narutoshi Hibino, Cameron A. Best, Alyson Engle, Svetlana Ghimbovschi, Susan Knoblach, Dilip S. Nath, Nobuyuki Ishibashi, Richard A. Jonas. Novel Association of miR-451 with the Incidence of TEVG Stenosis in a Murine Model. Tissue Engineering Part A 2016; 22(1-2): 75 doi: 10.1089/ten.tea.2014.0664
|
13 |
Deyi Shen, Yuwei Xia, Yuhan Fu, Qiaochang Cao, Wenqian Chen, Ying Zhu, Kaibo Guo, Leitao Sun. Hedgehog pathway and cancer: A new area (Review). Oncology Reports 2024; 52(3) doi: 10.3892/or.2024.8775
|
14 |
CHUNYAN WEN, XIAOJUN LIU, HONGXI MA, WENJIE ZHANG, HAIFENG LI. miR-338-3p suppresses tumor growth of ovarian epithelial carcinoma by targeting Runx2. International Journal of Oncology 2015; 46(5): 2277 doi: 10.3892/ijo.2015.2929
|
15 |
Floryne O. Buishand, Eric Cardin, Yue Hu, Thomas Ried. Trichostatin A preferentially reverses the upregulation of gene‐expression levels induced by gain of chromosome 7 in colorectal cancer cell lines. Genes, Chromosomes and Cancer 2018; 57(1): 35 doi: 10.1002/gcc.22505
|
16 |
Lin Li, Zihao An, Chao Lin, Qiang Xu, Chao Tang. An update on regulation and function of G protein-coupled receptors in cancer: A promising strategy for cancer therapy. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2025; 1880(2): 189266 doi: 10.1016/j.bbcan.2025.189266
|
17 |
Ashleigh Pulkoski-Gross, Xi E. Zheng, Deborah Kim, Jillian Cathcart, Jian Cao. Intestinal Tumorigenesis. 2015; : 309 doi: 10.1007/978-3-319-19986-3_11
|
18 |
Tian Yang, Bo-Zan Chen, Dan-Feng Li, Huai-Ming Wang, Xiao-Sheng Lin, Hong-Fa Wei, Yong-Ming Zeng. Reduced NM23 Protein Level Correlates With Worse Clinicopathologic Features in Colorectal Cancers. Medicine 2016; 95(4): e2589 doi: 10.1097/MD.0000000000002589
|
19 |
Geqiong Xiao, Qiong Wang, Bo Li, Xiaohui Wu, Hui Liao, Yili Ren, Ning Ai. MicroRNA-338-3p Suppresses Proliferation of Human Liver Cancer Cells by Targeting SphK2. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics 2018; 26(8): 1183 doi: 10.3727/096504018X15151495109394
|
20 |
Ashraf Bakkar, Mohammed Alshalalfa, Lars F. Petersen, Hatem Abou-Ouf, Amal Al-Mami, Samar A. Hegazy, Felix Feng, Reda Alhajj, Krikor Bijian, Moulay A. Alaoui-Jamali, Tarek A. Bismar. microRNA 338-3p exhibits tumor suppressor role and its down-regulation is associated with adverse clinical outcome in prostate cancer patients. Molecular Biology Reports 2016; 43(4): 229 doi: 10.1007/s11033-016-3948-4
|
21 |
Ammad Ahmad Farooqi, Giuseppe De Rosa. TRAIL and microRNAs in the treatment of prostate cancer: therapeutic potential and role of nanotechnology. Applied Microbiology and Biotechnology 2013; 97(20): 8849 doi: 10.1007/s00253-013-5227-9
|
22 |
Bensong Duan, Jiangfeng Hu, Tongyangzi Zhang, Xu Luo, Yi Zhou, Shun Liu, Liang Zhu, Cheng Wu, Wenxiang Liu, Chao Chen, Hengjun Gao. miRNA-338-3p/CDK4 signaling pathway suppressed hepatic stellate cell activation and proliferation. BMC Gastroenterology 2017; 17(1) doi: 10.1186/s12876-017-0571-3
|
23 |
Guowei Zhang, Hao Zheng, Guojun Zhang, Ruirui Cheng, Chunya Lu, Yijie Guo, Guoqiang Zhao. MicroRNA-338-3p suppresses cell proliferation and induces apoptosis of non-small-cell lung cancer by targeting sphingosine kinase 2. Cancer Cell International 2017; 17(1) doi: 10.1186/s12935-017-0415-9
|
24 |
Fuxing Tang, Xiaohong Jiang, Shijie Liao, Yun Liu, Maolin He. Construction of a transcription factor-miRNA-mRNA interactive network elucidates underlying pathogenesis for osteosarcoma and validation by qRT-PCR. Medicine 2022; 101(41): e31049 doi: 10.1097/MD.0000000000031049
|
25 |
Xiaoqian Zhang, Chunxia Wang, Hui Li, Xiaobin Niu, Xinwei Liu, Dongxu Pei, Xiaolan Guo, Xiaona Xu, Yongwei Li. miR-338-3p inhibits the invasion of renal cell carcinoma by downregulation of ALK5. Oncotarget 2017; 8(38): 64106 doi: 10.18632/oncotarget.19329
|
26 |
Kai-Min Xiang, Xiao-Rong Li. MiR-133b Acts as a Tumor Suppressor and Negatively Regulates TBPL1 in Colorectal Cancer Cells. Asian Pacific Journal of Cancer Prevention 2014; 15(8): 3767 doi: 10.7314/APJCP.2014.15.8.3767
|
27 |
Zhigang Tong, Xianfeng Meng, Jinsong Wang, Lixin Wang. MicroRNA‑338‑3p targets SOX4 and inhibits cell proliferation and invasion of renal cell carcinoma. Experimental and Therapeutic Medicine 2017; doi: 10.3892/etm.2017.5169
|
28 |
Zenghai Lin, Jianwei Lin. Circ_0004585 Facilitates Tumorigenesis of Colorectal Cancer Via Modulating the miR-338-3p/ZFX Axis and Activating the MEK/ERK Pathway. Cellular and Molecular Bioengineering 2023; 16(2): 159 doi: 10.1007/s12195-022-00756-6
|
29 |
Jian Li, Yunshi Zhong, Shilun Cai, Pinghong Zhou, Liqing Yao. MicroRNA expression profiling in the colorectal normal‑adenoma‑carcinoma transition. Oncology Letters 2019; doi: 10.3892/ol.2019.10464
|
30 |
Zeeshan Javed, Muhammad Javed Iqbal, Amna Rasheed, Haleema Sadia, Shahid Raza, Asma Irshad, Wojciech Koch, Wirginia Kukula-Koch, Anna Głowniak-Lipa, William C. Cho, Javad Sharifi-Rad. Regulation of Hedgehog Signaling by miRNAs and Nanoformulations: A Possible Therapeutic Solution for Colorectal Cancer. Frontiers in Oncology 2021; 10 doi: 10.3389/fonc.2020.607607
|
31 |
JIANGTAO SUN, XIAOSHANG FENG, SHEGAN GAO, ZHONGYUE XIAO. microRNA-338-3p functions as a tumor suppressor in human non-small-cell lung carcinoma and targets Ras-related protein 14. Molecular Medicine Reports 2015; 11(2): 1400 doi: 10.3892/mmr.2014.2880
|
32 |
XINYU LI, ZHIHONG LI, GUIYUN YANG, ZHENXIANG PAN. MicroRNA-338-3p suppresses tumor growth of esophageal squamous cell carcinoma in vitro and in vivo. Molecular Medicine Reports 2015; 12(3): 3951 doi: 10.3892/mmr.2015.3820
|
33 |
James R. Howe, Emily S. Li, Sarah E. Streeter, Gilbert J. Rahme, Edmond Chipumuro, Grace B. Russo, Julia F. Litzky, L. Benjamin Hills, Kyla R. Rodgers, Patrick D. Skelton, Bryan W. Luikart, Wenhui Hu. MiR-338-3p regulates neuronal maturation and suppresses glioblastoma proliferation. PLOS ONE 2017; 12(5): e0177661 doi: 10.1371/journal.pone.0177661
|
34 |
Bo Han, Xiangqi Meng, Hui Chen, Lingchao Chen, Xing Liu, Hongjun Wang, Daming Liu, Fei Gao, Lin Lin, Jianguang Ming, Bo Sun, Shi Yin, Ruijia Wang, Pengfei Wu, Jinquan Cai, Chuanlu Jiang. Epigenetic silencing of miR-338 facilitates glioblastoma progression by de-repressing the pyruvate kinase M2-β-catenin axis. Aging 2017; 9(8): 1885 doi: 10.18632/aging.101271
|
35 |
Paolo Magistri, Cecilia Battistelli, Raffaele Strippoli, Niccolò Petrucciani, Teijo Pellinen, Lucia Rossi, Livia Mangogna, Paolo Aurello, Francesco D'Angelo, Marco Tripodi, Giovanni Ramacciato, Giuseppe Nigri. SMO Inhibition Modulates Cellular Plasticity and Invasiveness in Colorectal Cancer. Frontiers in Pharmacology 2018; 8 doi: 10.3389/fphar.2017.00956
|
36 |
He-mei Song, Dan Meng, Jin-ping Wang, Xiao-yan Zhang, Zhongqiu Xie. circRNA hsa_circ_0005909 Predicts Poor Prognosis and Promotes the Growth, Metastasis, and Drug Resistance of Non-Small-Cell Lung Cancer via the miRNA-338-3p/SOX4 Pathway. Disease Markers 2021; 2021: 1 doi: 10.1155/2021/8388512
|
37 |
Jia Song, Yuexin Ge, Xiaoyu Sun, Qiutong Guan, Shiqiang Gong, Minjie Wei, Jumin Niu, Lin Zhao. Noncoding RNAs related to the hedgehog pathway in cancer: clinical implications and future perspectives. Molecular Cancer 2022; 21(1) doi: 10.1186/s12943-022-01591-z
|
38 |
Q. Xue, K. Sun, H.-J. Deng, S.-T. Lei, J.-Q. Dong, G.-X. Li. MicroRNA-338-3p Inhibits Colorectal Carcinoma Cell Invasion and Migration by Targeting Smoothened. Japanese Journal of Clinical Oncology 2014; 44(1): 13 doi: 10.1093/jjco/hyt181
|
39 |
Tong Zhang, Wei Liu, Xian-cheng Zeng, Nan Jiang, Bin-sheng Fu, Y. Guo, Hui-ming Yi, Hua Li, Qi Zhang, Wen-jie Chen, Gui-hua Chen. Down-regulation of microRNA-338-3p promoted angiogenesis in hepatocellular carcinoma. Biomedicine & Pharmacotherapy 2016; 84: 583 doi: 10.1016/j.biopha.2016.09.056
|
40 |
Ping Zhang, Yan Wang, Xue‑Rong Liu, Shi‑Ru Hong, Jian Yao. Downregulated Tim‑3 expression is responsible for the incidence and development of colorectal cancer. Oncology Letters 2018; doi: 10.3892/ol.2018.8697
|
41 |
Li-Hong Peng, Jun Yin, Liqian Zhou, Ming-Xi Liu, Yan Zhao. Human Microbe-Disease Association Prediction Based on Adaptive Boosting. Frontiers in Microbiology 2018; 9 doi: 10.3389/fmicb.2018.02440
|
42 |
Qianwen Ni, Min An, Shi Luo, Xiaocui Li, Guijun He, Manru Shen, Linfang Xu, Jiying Huang, Meizhu Yan, Yu Fan, Zhenjun Gao. Pseudogene TDGF1P3 regulates the proliferation and metastasis of colorectal cancer cells via the miR-338-3p–PKM2 axis. Biochemical and Biophysical Research Communications 2023; 638: 7 doi: 10.1016/j.bbrc.2022.11.054
|
43 |
Xiaoxiao Wang, Chao Zhang, Huangqin Song, Junlong Yuan, Lei Zhang, Jiefeng He. CircCCDC66: Emerging roles and potential clinical values in malignant tumors. Frontiers in Oncology 2023; 12 doi: 10.3389/fonc.2022.1061007
|
44 |
Xin Chen, Min Pan, Lulu Han, Hongting Lu, Xiwei Hao, Qian Dong. miR‐338‐3p suppresses neuroblastoma proliferation, invasion and migration through targeting PREX2a. FEBS Letters 2013; 587(22): 3729 doi: 10.1016/j.febslet.2013.09.044
|
45 |
Zhen-Ru Liu, Yi Song, Li-Hong Wan, Yuan-Yuan Zhang, Li-Mimg Zhou. Over-expression of miR-451a can enhance the sensitivity of breast cancer cells to tamoxifen by regulating 14-3-3ζ, estrogen receptor α, and autophagy. Life Sciences 2016; 149: 104 doi: 10.1016/j.lfs.2016.02.059
|
46 |
Bo Guo, Liying Liu, Jiayi Yao, Ruili Ma, Dongmin Chang, Zongfang Li, Tusheng Song, Chen Huang. miR-338-3p Suppresses Gastric Cancer Progression through a PTEN-AKT Axis by Targeting P-REX2a. Molecular Cancer Research 2014; 12(3): 313 doi: 10.1158/1541-7786.MCR-13-0507
|
47 |
Suoning Liu, Jian Suo, Chunxi Wang, Xuan Sun, Daguang Wang, Liang He, Yang Zhang, Wei Li. Downregulation of tissue miR-338-3p predicts unfavorable prognosis of gastric cancer. Cancer Biomarkers 2017; 21(1): 117 doi: 10.3233/CBM-170339
|