Copyright
©The Author(s) 2021.
Artif Intell Gastrointest Endosc. Oct 28, 2021; 2(5): 198-210
Published online Oct 28, 2021. doi: 10.37126/aige.v2.i5.198
Published online Oct 28, 2021. doi: 10.37126/aige.v2.i5.198
Ref. | Target disease | Endoscopic modality | AI technology | Database | Outcomes |
van der Sommen et al[23], 2016 | Early neoplasia in BE | WLI | SVM | 100 images | Per-image sensitivity 83%/specificity 83%; Per-patient sensitivity 86%/specificity: 87% |
Struyvenberg et al[24], 2021 | BE | WLI/NBI | CNN | Train 494364 images/1247 images; test 183 images/157 videos | Images: Accuracy 84%/sensitivity 88%/specificity 78%; Videos: Accuracy 83%/sensitivity 85%/specificity 83% |
de Groof et al[25], 2020 | Early neoplasia in BE | WLI | ResNet-UNet | Train 1544 images; test 160 images | Dataset 4: Accuracy 89%/sensitivity 90%/specificity 88%; Dataset 5: Accuracy 88%/sensitivity 93%/specificity 83% |
de Groof et al[26], 2020 | Barrett’s neoplasia | WLI | ResNet-UNet | Train 1544 images; test 20 patients | Accuracy 90%/sensitivity 91%/specificity 89% |
Hong et al[27], 2017 | BE | Endomicroscopy | CNN | Train 236 images; test 26 images | Accuracy 80.77% |
Hashimoto et al[28], 2020 | Early neoplasia in BE | WLI/NBI | CNN | Train 1832 images; test 458 images | Accuracy 95.4%/sensitivity 96.4%/ specificity 94.2% |
de Groof et al[29], 2019 | Barrett’s neoplasia | WLI | SVM | 60 images | Accuracy 92%/sensitivity 95%/specificity 85% |
- Citation: Li N, Jin SZ. Artificial intelligence and early esophageal cancer. Artif Intell Gastrointest Endosc 2021; 2(5): 198-210
- URL: https://www.wjgnet.com/2689-7164/full/v2/i5/198.htm
- DOI: https://dx.doi.org/10.37126/aige.v2.i5.198