Minireviews
Copyright ©The Author(s) 2021.
Artif Intell Gastrointest Endosc. Oct 28, 2021; 2(5): 198-210
Published online Oct 28, 2021. doi: 10.37126/aige.v2.i5.198
Table 1 Application of artificial intelligence in endoscopic detection of Barrett’s esophagus
Ref.
Target disease
Endoscopic modality
AI technology
Database
Outcomes
van der Sommen et al[23], 2016Early neoplasia in BEWLISVM100 imagesPer-image sensitivity 83%/specificity 83%; Per-patient sensitivity 86%/specificity: 87%
Struyvenberg et al[24], 2021BEWLI/NBICNNTrain 494364 images/1247 images; test 183 images/157 videosImages: Accuracy 84%/sensitivity 88%/specificity 78%; Videos: Accuracy 83%/sensitivity 85%/specificity 83%
de Groof et al[25], 2020Early neoplasia in BEWLIResNet-UNetTrain 1544 images; test 160 imagesDataset 4: Accuracy 89%/sensitivity 90%/specificity 88%; Dataset 5: Accuracy 88%/sensitivity 93%/specificity 83%
de Groof et al[26], 2020Barrett’s neoplasiaWLIResNet-UNetTrain 1544 images; test 20 patientsAccuracy 90%/sensitivity 91%/specificity 89%
Hong et al[27], 2017BEEndomicroscopyCNNTrain 236 images; test 26 imagesAccuracy 80.77%
Hashimoto et al[28], 2020Early neoplasia in BEWLI/NBICNNTrain 1832 images; test 458 imagesAccuracy 95.4%/sensitivity 96.4%/ specificity 94.2%
de Groof et al[29], 2019Barrett’s neoplasiaWLISVM60 imagesAccuracy 92%/sensitivity 95%/specificity 85%