Copyright
©The Author(s) 2021.
Artif Intell Gastrointest Endosc. Jun 28, 2021; 2(3): 79-88
Published online Jun 28, 2021. doi: 10.37126/aige.v2.i3.79
Published online Jun 28, 2021. doi: 10.37126/aige.v2.i3.79
Table 2 List of studies evaluating role of artificial intelligence in characterization of colon polyps during the colonoscopy
Ref. | Country of origin | Study design | Results |
Misawa et al[53], 2016 | Japan | Retrospective | Sensitivity 84.5%, Specificity 98% |
Mori et al[54], 2016 | Japan | Retrospective | Accuracy 89% |
Kominami et al[55], 2016 | Japan | Prospective | Sensitivity 93%, Specificity 93.3% |
Komeda et al[56], 2017 | Japan | Retrospective | Accuracy 75% |
Takeda et al[57], 2017 | Japan | Retrospective | Sensitivity 89.4%, Specificity 98.9%, Accuracy 94.1 % |
Chen et al[23], 2018 | Taiwan | Retrospective | PPV of 89.6%, and a NPV of 91.5% |
Renner[58], 2018 | Germany | Retrospective | Sensitivity 92.3% and NPV 88.2% |
Mori et al[59], 2018 | Japan | Prospective | Accuracy 98.1% |
Blanes-Vidal et al[60], 2019 | Denmark | Retrospective | Accuracy 96.4% |
Min et al[61], 2019 | China | Prospective | Sensitivity 83.3%, Specificity 70.1% |
Byrne [22], 2019 | Canada | Retrospective | Accuracy 94% |
Sánchez-Monteset al[62], 2019 | Spain | Retrospective | Sensitivity 92.3%, Specificity 89.2% |
Horiuchi et al[63], 2019 | Japan | Prospective | Sensitivity 80%, Specificity 95.3% |
Lui et al[64], 2019 | China | Retrospective | Sensitivity 88.2%, Specificity 77.9% |
Ozawa et al[49], 2020 | Japan | Retrospective | Sensitivity 97%, PPV 84%, NPV 88% |
Jin et al[65], 2020 | South Korea | Prospective | Sensitivity 83.3%, Specificity 91.7% |
Rodriguez-Diazet al[66], 2020 | United States | Prospective | Sensitivity 96%, Specificity 84% |
Kudo et al[67], 2020 | Japan | Retrospective | Sensitivity 96.9%, Specificity 100% |
- Citation: Shah N, Jyala A, Patel H, Makker J. Utility of artificial intelligence in colonoscopy. Artif Intell Gastrointest Endosc 2021; 2(3): 79-88
- URL: https://www.wjgnet.com/2689-7164/full/v2/i3/79.htm
- DOI: https://dx.doi.org/10.37126/aige.v2.i3.79