Copyright
©The Author(s) 2021.
Artif Intell Gastrointest Endosc. Jun 28, 2021; 2(3): 71-78
Published online Jun 28, 2021. doi: 10.37126/aige.v2.i3.71
Published online Jun 28, 2021. doi: 10.37126/aige.v2.i3.71
Ref. | Training dataset | Test dataset | Resolution | Group | AUC % |
Cho et al[25] (2019) | 4205 | 812 | 1280 × 640 | Five-category classification | 84.6 |
Cancer vs non-cancer | 87.7 | ||||
Neoplasm vs non-neoplasm | 92.7 | ||||
Sharma et al[27] (2017) | 231000 for cancer classification | NA | 512 × 512 | Cancer classification | 69.9 |
47130 for necrosis detection | Necrosis detection | 81.4 | |||
Iizuka et al[28] (2020) | 3628 | 500 | 512 × 512 | Adenocarcinoma | 98 |
Adenoma | 93.6 | ||||
Song et al[29] (2020) | 2123 | 3212 from PLAGH | 320 × 320 | Benign and malignant cases and tumour subtypes | 98.6 |
595 from PUMCH | 99.0 | ||||
987 from CHCAMS | 99.6 |
- Citation: Feng XY, Xu X, Zhang Y, Xu YM, She Q, Deng B. Application of convolutional neural network in detecting and classifying gastric cancer. Artif Intell Gastrointest Endosc 2021; 2(3): 71-78
- URL: https://www.wjgnet.com/2689-7164/full/v2/i3/71.htm
- DOI: https://dx.doi.org/10.37126/aige.v2.i3.71