Copyright
©The Author(s) 2021.
Artif Intell Gastrointest Endosc. Jun 28, 2021; 2(3): 71-78
Published online Jun 28, 2021. doi: 10.37126/aige.v2.i3.71
Published online Jun 28, 2021. doi: 10.37126/aige.v2.i3.71
Ref. | Endoscopic images | Training dataset | Test dataset | Resolution | Sensitivity % | Specificity % | Accuracy/AUC % | PPV % | NPV % |
Hirasawa et al[10] (2018) | WLI/NBI/chromoendoscopy images | 13584 | 2296 | 300 × 300 | 92.2 | NA | NA | 30.6 | NA |
Ishioka et al[21] (2019) | Video images | NA | 68 | NA | 94.1 | NA | NA | NA | NA |
Li et al[23] (2020) | M-NBI images | 20000 | 341 | 512 × 512 | 91.18 | 90.64 | 90.91 | 90.64 | 91.18 |
Ikenoyama et al[24](2021) | WLI/NBI/chromoendoscopy images | 13584 | 2940 | 300 × 300 | 58.4 | 87.3 | 75.7 | 26.0 | 96.5 |
- Citation: Feng XY, Xu X, Zhang Y, Xu YM, She Q, Deng B. Application of convolutional neural network in detecting and classifying gastric cancer. Artif Intell Gastrointest Endosc 2021; 2(3): 71-78
- URL: https://www.wjgnet.com/2689-7164/full/v2/i3/71.htm
- DOI: https://dx.doi.org/10.37126/aige.v2.i3.71