Copyright
©The Author(s) 2021.
Artif Intell Gastrointest Endosc. Apr 28, 2021; 2(2): 12-24
Published online Apr 28, 2021. doi: 10.37126/aige.v2.i2.12
Published online Apr 28, 2021. doi: 10.37126/aige.v2.i2.12
Database | Time collected | Number of samples | Resolution | Training set | Test set |
GR-AIDS[31] | 2019 | 1036496 | 512 × 512 | 829197 | 103650 |
Jang Hyung Lee[32] | 2019 | 787 | 224 × 224 | 717 | 70 |
Toshiaki Hirasawa[33] | 2018 | 13584 | 512 × 512 | 13584 | 2496 |
Bum-Joo Cho[34] | 2019 | 5017 | 512 × 512 | 4205 | 812 |
Hiroya Ueyama[35] | 2020 | 7874 | 512 × 512 | 5574 | 2300 |
Lan Li[36] | 2020 | 2088 | 512 × 512 | 1747 | 341 |
Mads Sylvest Bergholt[37] | 2011 | 1063 | 512 × 512 | 850 | 213 |
- Citation: Li Y, Zhou D, Liu TT, Shen XZ. Application of deep learning in image recognition and diagnosis of gastric cancer. Artif Intell Gastrointest Endosc 2021; 2(2): 12-24
- URL: https://www.wjgnet.com/2689-7164/full/v2/i2/12.htm
- DOI: https://dx.doi.org/10.37126/aige.v2.i2.12