Copyright
©The Author(s) 2020.
Artif Intell Gastrointest Endosc. Oct 28, 2020; 1(2): 33-43
Published online Oct 28, 2020. doi: 10.37126/aige.v1.i2.33
Published online Oct 28, 2020. doi: 10.37126/aige.v1.i2.33
Ref. | Class/outcome variable | Deep network architecture | Device/image resolution | Training and internal validation dataset | Testing/external validation dataset | Accuracy (%)/AUC | Sensitivity (%)/specificity (%) |
Seguí et al[38], 2016, Spain | Scenes (turbid, bubbles, clear blob, wrinkles, wall) | CNN | Pillcam SB2 CE/100 × 100 pixels | 100000 images from 50 videos | 20000 images from 50 videos | 96/NA | NA/NA |
Zou et al[5], 2015, NA | Organ locations (stomach, small intestine, and colon) | CNN (AlexNet) | NA/480 × 480 pixels | 60000 images | 15000 images | 95.52/NA | NA/NA |
- Citation: Atsawarungruangkit A, Elfanagely Y, Asombang AW, Rupawala A, Rich HG. Understanding deep learning in capsule endoscopy: Can artificial intelligence enhance clinical practice? Artif Intell Gastrointest Endosc 2020; 1(2): 33-43
- URL: https://www.wjgnet.com/2689-7164/full/v1/i2/33.htm
- DOI: https://dx.doi.org/10.37126/aige.v1.i2.33