Minireviews
Copyright ©The Author(s) 2021.
Artif Intell Med Imaging. Aug 28, 2021; 2(4): 86-94
Published online Aug 28, 2021. doi: 10.35711/aimi.v2.i4.86
Table 3 Applications of deep learning in abdominal reconstruction
Ref.
Task
Method
Images
Metric
Lv et al[55], 2018Respiratory motion correction for free-breathing 3D abdominal MRICNN3D golden angle-radial SOS abdominal imagesSNR: 207.42 ± 96.73
Jiang et al[56], 2019Respiratory motion correction in abdominal MRIU-NetGANT1-weighted abdominal imagesFSE: 0.920; GRE: 0.910; Simulated motion: 0.928
Küstner et al[57], 2020Motion-corrected image reconstruction in 4D MRI U-netCNNT1-weighted in-vivo 4D MR imagesEPE: 0.17 ± 0.26; EAE: 7.9 ± 9.9; SSIM: 0.94 ± 0.04; NRMSE: 0.5 ± 0.1
Akagi et al[58], 2019Improving image quality of abdominal U-HRCT using DLR methodDLRU-HRCT abdominal CT imagesP < 0.01
Nakamura et al[59], 2019To evaluate the effect of a DLR method DLRAbdominal CT imagesP < 0.001