Minireviews
Copyright ©The Author(s) 2021.
Artif Intell Med Imaging. Aug 28, 2021; 2(4): 86-94
Published online Aug 28, 2021. doi: 10.35711/aimi.v2.i4.86
Table 1 Abdominal image reconstruction algorithms based on a convolutional neural network
Ref.
Task
Method
Images
Metric
Kang et al[30], 2017Low-dose CT reconstructionCNNAbdominal CT imagesPSNR: 34.55
Chen et al[31], 2017Low-dose CT reconstructionRED-CNNLow-dose abdominal CT imagesPSNR: 43.79 ± 2.01; SSIM: 0.98 ± 0.01; RMSE: 0.69 ± 0.07
Han et al[27], 2018Accelerated projection-reconstruction MRIU-netCNNLow-dose abdominal CT images; synthetic radial abdominal MR imagesPSNR: 31.55
Lv et al[26], 2018Undersampled radial free-breathing 3D abdominal MRIAuto-encoderCNN3D golden angle-radial SOS liver MR imagesP < 0.001
Ge et al[32], 2020CT image reconstruction directly from a sinogramResidual encoder-decoder + CNNLow-dose abdominal CT imagesPSNR: 43.15 ± 1.93; SSIM: 0.97 ± 0.01; NRMSE: 0.71 ± 0.16
MacDougall et al[33], 2019Improving low-dose pediatric abdominal CTCNNLiver CT images;Spleen CT imagesP < 0.001
Tamada et al[29], 2020DCE MR imaging of the liverCNNT1-weighted liver MR imagesSSIM: 0.91
Zhou et al[28], 2019Applications in low-latency accelerated real-time imagingPICNNbSSFP cardiac MR images; bSSFP abdominal MR imagesAbdominal: NRMSE: 0.08 ± 0.02; SSIM: 0.90 ± 0.02
Zhang et al[34], 2020Reconstructing 3D liver vessel morphology from contrasted CT imagesGNNCNNMulti-phase contrasted liver CT imagesF1 score: 0.8762 ± 0.0549
Zhou et al[35], 2020Limited view tomographic reconstructionResidual dense spatial-channel attention + CNNWhole body CT imagesLAR: PSNR: 35.82; SSIM: 0.97 SVR: PSNR: 41.98; SSIM: 0.97
Kazuo et al[36], 2021Image reconstructionin low-dose and sparse-view CT CS + CNNLow-dose abdominal CT images; Sparse-view abdominal CT imagesLow-Dose CT case: PSNR: 33.2; SSIM: 0.91 Sparse-View CT case: PSNR: 29.2; SSIM: 0.91