Minireviews
Copyright ©The Author(s) 2021.
Artif Intell Med Imaging. Jun 28, 2021; 2(3): 73-85
Published online Jun 28, 2021. doi: 10.35711/aimi.v2.i3.73
Table 2 summary of the current literature on the prognostic value of machine learning algorithms in coronary computed tomography angiography
Ref.
Journal
Prospective
Multi Center
No. of Patients
No. of Events
Algorithm
Endpoint
Follow-up time
Performance
Motwani et al[48], 2017European Heart JournalYesYes10030745 diedLogitBoost5-yr all-cause mortality5.4 ± 1.4 yrAUC = 0.79
van Rosendael et al[47], 2018Journal of Cardiovascular Computed TomographYesYes8844350 death and 259 non-fatal MIXGBoostMI and death4.6 ± 1.5 yrAUC = 0.77
Johnson et al[49], 2019RadiologyNoNo6892380 died of all causes and 70 died of CADLogistic regression, KNN, Bagged trees, and classification neural networkDeath or cardiovascular events9.0 yr (interquartile range, 8.2–9.8 yr)For all-cause mortality: AUC = 0.77; For CAD deaths: AUC = 0.85
van Assen et al[50], 2019European Journal of RadiologyNoNo4516 MACEsRegression analysisMACE12 moAUC = 0.94
von Knebel Doeberitz et al[51], 2019The American Journal of CardiologyNoNo8218 MACEsIntegration of CT-FFR, stenosis ≥ 50% and plaque markers MACE18.5 mo (interquartile range 11.5 to 26.6 mo)AUC = 0.94
Commandeur et al[52], 2020Cardiovascular ResearchYes191276 MI and/or cardiac deathMLLong-term risk of MI and cardiac death14.5 ± 2 yrAUC = 0.82
Kwan et al[53], 2021European RadiologyYesYes352MLFuture revascularizationAUC = 0.78