Copyright
©The Author(s) 2020.
Artif Intell Med Imaging. Sep 28, 2020; 1(3): 94-107
Published online Sep 28, 2020. doi: 10.35711/aimi.v1.i3.94
Published online Sep 28, 2020. doi: 10.35711/aimi.v1.i3.94
Table 2 Discrimination ability of the best classifier of the original neural network architecture comparing the combination method[13]
Patient age (yr) | Accuracy | Sensitivity | Specificity | PPV | NPV | AUC | 95%CI of the AUC | Cut-point |
AI in this study | ||||||||
All ages | 0.743 | 0.638 | 0.789 | 0.573 | 0.831 | 0.740 | 0.681-0.801 | 0.207 |
The combination method[13] | ||||||||
All ages | 0.721 | 0.779 | 0.704 | 0.400 | 0.885 | 0.773 | 0.655-0.888 | 0.213 |
< 35 | 0.616 | 0.652 | 0.592 | 0.515 | 0.719 | 0.655 | 0.600-0.707 | 0.388 |
35-37 | 0.671 | 0.786 | 0.612 | 0.508 | 0.849 | 0.723 | 0.653-0.793 | 0.281 |
38-39 | 0.732 | 0.758 | 0.725 | 0.455 | 0.908 | 0.791 | 0.693-0.889 | 0.219 |
40-41 | 0.801 | 0.700 | 0.816 | 0.350 | 0.950 | 0.806 | 0.687-0.925 | 0.142 |
≥ 42 | 0.784 | 1.000 | 0.773 | 0.171 | 1.000 | 0.888 | 0.713-1.063 | 0.037 |
- Citation: Miyagi Y, Habara T, Hirata R, Hayashi N. Predicting a live birth by artificial intelligence incorporating both the blastocyst image and conventional embryo evaluation parameters. Artif Intell Med Imaging 2020; 1(3): 94-107
- URL: https://www.wjgnet.com/2644-3260/full/v1/i3/94.htm
- DOI: https://dx.doi.org/10.35711/aimi.v1.i3.94