Copyright
©The Author(s) 2020.
Artif Intell Med Imaging. Jun 28, 2020; 1(1): 19-30
Published online Jun 28, 2020. doi: 10.35711/aimi.v1.i1.19
Published online Jun 28, 2020. doi: 10.35711/aimi.v1.i1.19
Ref. | Year | Disease | Number | Training/testing | Modality | Design | Feature selection | Results |
PADC detection | ||||||||
Chu et al[18] | 2019 | PDAC vs normal | 190:190 | 255/125 | CT | Retrospective | RF | Accuracy: 99.2%; AUC: 0.99 |
Liu et al[19] | 2020 | PDAC vs normal | 370:320 | PDAC: 295/256; Normal: 75/64 | CT | Retrospective | CNN | Accuracy: 98.6-98.9%; AUC: 0.997-0.999 |
Li et al[21] | 2020 | LN metastasis | 159 | 118/41 | CT | Retrospective | LASSO | Combined model; AUC: Training/test = 0.944/0.912 |
Bian et al[22] | 2019 | LN metastasis | 225 | - | CT | Retrospective | LASSO | The arterial rad-score is associated with the risk of LN metastasis. |
Hui et al[25] | 2020 | R0 vs R1 after PD | 34:52 | - | CT | Retrospective | SVM | AUC: 0.8614 Accuracy: 84.88% |
Bian et al[26] | 2020 | SMV margin (R0 vs R1) after PD | 127:54 | - | CT | Retrospective | LASSO | AUC: 0.75 |
Zhang et al[28] | 2018 | POPF after PD | 117 | 80/37 | CT | Retrospective | LASSO | AUC: Training/test 0.8248/0.7609 |
Xie et al[32] | 2020 | PFS and OS | 220 | 147/73 | CT | Retrospective | LASSO | Rad-score is better than clinical model and TNM system |
Cozzi et al[33] | 2019 | OS and local control after SBRT | 100 | 60/40 | CT | Retrospective | Elastic net regularization, Cox regression models | Identify low and high-risk groups |
IPMN | ||||||||
Chakraborty et al[41] | 2018 | Low risk vs high risk | 103 | CT | Retrospective | RF, SVM | AUC: 0.77 | |
Corral et al[42] | 2019 | Normal pancreas, low-grade dysplasia, high-grade dysplasia, and adenocarcinoma | 139 (31:48:20:40) | - | MRI | Retrospective | Deep learning | AUC: 0.78 |
PNET | ||||||||
Liang et al[49] | 2019 | Grade 1 vs 2/3 | 137 | 86/51 | CT | Retrospective | LASSO | AUC: Training/test = 0.907/0.891 |
Gu et al[50] | 2019 | Grade 1 vs 2/3 | 138 | 104/34 | CT | Retrospective | MRMR, RF | AUC: Training/test = 0.974/0.902 |
Bian et al[51] | 2020 | Grade 1 vs 2/3 (non-functional) | 139 | 97/42 | MRI | Retrospective | LASSO and LDA | AUC: Training/test = 0.851/0.736 |
Other pancreatic lesions | ||||||||
Park et al[54] | 2020 | AIP vs PDAC | 85: 93 | 60/29: 60/33 | CT | Retrospective | RF | Accuracy: 95.2%; AUC: 0.975 |
Zhang et al[55] | 2019 | AIP vs PDAC | 45: 66 | - | PET/CT | Retrospective | RF, adaptive boosting, SVM | Accuracy: 85%; AUC: 0.93 |
Ren et al[56] | 2019 | MFP vs PDAC | 79: 30 | 69/40 | CT | Retrospective | Mann-Whitney U test, MRMR | AUC: 0.98 |
Mashayekhi et al[57] | 2020 | Functional abdominal pain, recurrent acute pancreatitis, chronic pancreatitis | 20:19:17 | - | CT | Retrospective | Isomap and SVM | Accuracy: 82.1% |
Yang et al[58] | 2019 | Serous vs mucinous cystadenoma | 53: 25 | 4:1 | CT | Retrospective | RF | Accuracy: 83%; AUC: 0.75 |
- Citation: Chen BB. Artificial intelligence in pancreatic disease. Artif Intell Med Imaging 2020; 1(1): 19-30
- URL: https://www.wjgnet.com/2644-3260/full/v1/i1/19.htm
- DOI: https://dx.doi.org/10.35711/aimi.v1.i1.19