Review
Copyright ©The Author(s) 2023.
Artif Intell Gastroenterol. Dec 8, 2023; 4(3): 48-63
Published online Dec 8, 2023. doi: 10.35712/aig.v4.i3.48
Table 2 Studies on differentiation of indeterminate lesions using artificial intelligence algorithms on computed tomography images
No.
Ref.
Number of patients
Primary objective
Sub-type of AI used
Outcome
1Qureshi et al[36], 2022108Identification of PDACMLAccuracy: 86%
2Ebrahimian et al[121], 2022103Differentiation of benign vs malignant pancreatic lesionsRFAUC: 0.94
3Chakraborty et al[59], 2018103High risk vs low risk IPMNRF, SVMAUC: 0.81
4Polk et al[60], 202029High risk vs low risk IPMNLRAUC: 0.90
5Ikeda et al[122], 199771PDAC vs pancreatitisNNAUC: 0.916
6Chen et al[58], 2021100SCN vs MCNLASSO and RFE_Linear SVCAUC: 0.932
7Yang et al[57], 201953SCN vs MCNLASSOAUC: 0.66
8Yang et al[123], 202263SCN vs MCNMMRF-ResNetAUC: 0.98
9Ren et al[124], 2020112PDAC vs pancreatic adenosquamous carcinomaRFAUC: 0.98
10Xie et al[125], 2021226MCN vs ASCNRFAUC: 0.734
11Ziegelmayer et al[126], 202086AIP vs PDACCNN, MLAUC: 0.90
12Li et al[62], 202297Focal-type AIP vs PDACLASSO regressionAUC: 0.97
13Gao et al[127], 2021170MCN vs SCNmRMR + LASSOAUC: 0.91
14Dmitriev et al[53], 2017134Classification of pancreatic cystRF, CNNAccuracy: 83.6%
15Li et al[54], 2019206Classification of pancreatic cystsDNN (Dense-Net)Accuracy: 72.8%
16Wei et al[56], 2019260SCN vs other cystic neoplasmsMLAUC: 0.767