Copyright
©The Author(s) 2021.
Artif Intell Gastroenterol. Dec 28, 2021; 2(6): 141-156
Published online Dec 28, 2021. doi: 10.35712/aig.v2.i6.141
Published online Dec 28, 2021. doi: 10.35712/aig.v2.i6.141
Ref. | Task | No. of cases/data set | Method | Performance |
Xu et al[96] | Classification | 717 patches (N, ADC subtypes) | AlexNet | Accuracy (97.5%) |
Awan et al[97] | 454 cases (N, ADC grades LG vs HG) | NN | Accuracy (97%, for 2-class; 91%, for 3-class) | |
Haj-Hassan et al[98] | 30 multispectral image patches (N, AD, ADC) | CNN | Accuracy (99.2%) | |
Kainz et al[99] | 165 images (benign vs malignant) | CNN (LeNet-5) | Accuracy (95%-98%) | |
Korbar et al[34] | 697 cases (N, AD subtypes) | ResNet | Accuracy (93.0%) | |
Yoshida et al[100] | 1328 colorectal biopsy WSIs | ML | Accuracy (90.1% for adenoma) | |
Wei et al[35] | 326 slides (training), 25 slides (validation) 157 slides (internal set) | ResNet | 157 slides: Accuracy 93.5% vs 91.4%(pathologists) 238 slides: Accuracy 87.0% vs 86.6%(pathologists) | |
Ponzio et al[101] | 27 WSIs (13500 patches) (N, AD, ADC) | VGG16 | Accuracy (96%) | |
Kather et al[47] | 94 WSIs1 | ResNet18 | AUC (> 0.99) | |
Yoon et al[102] | 57 WSIs (10280 patches) | VGG | Accuracy (93.5%) | |
Iizuka et al[33] | 4036 WSIs (N, AD, ADC) | CNN/RNN | AUCs (0.96, ADC; 0.99, AD) | |
Sena et al[103] | 393 WSIs (12565 patches) (N, HP, AD, ADC) | CNN | Accuracy (80%) | |
Bychkov et al[45] | Prognosis | 420 cases | RNN | HR of 2.3, AUC (0.69) |
Kather et al[46] | 1296 WSIs | VGG19 | Accuracy (94%-99%) | |
Kather et al[46] | 934 cases | DL (comp. 5 networks) | HR for overall survival of 1.63-1.99 | |
Geessink et al[104] | 129 cases | NN | HR of 2.04 for disease free survival | |
Skrede et al [105] | 2022 cases | Neural networks with MIL | HR 3.04 | |
Kather et al[47] | Genetic alterations | TCGA-DX (93408 patches)1TCGA-KR (60894 patches) | ResNet18 | AUC (0.77), TCGA-DXAUC (0.84), TCGA KR) |
Echle et al[55] | 8836 cases (MSI) | ShuffleNet DL | AUC (0.92-0.96 in two cohorts) | |
Kather et al[47] | Tumor microenvironment analysis | 86 WSIs (100000)1 | VGG19 | Accuracy (94%-99%) |
Shapcott et al[48] | 853 patches and 142 TCGA images | CNN with a grid-based attention network | Accuracy (65-84% in two sets) | |
Swiderska-Chadaj et al[49] | 28 WSIs | FCN/LSM/U-Net | Sensitivity (74.0%) | |
Alom et al[106] | 21135 patches | DCRN/R2U-Net | Accuracy (91.9%) | |
Sirinukunwattana et al[107] | Molecular subtypes | 1206 cases | NN with domain-adversarial learning | AUC (0.84-0.95 in the two validation sets) |
Weis et al[50] | Tumor budding | 401 cases | CNN | Correlation R (0.86) |
- Citation: Alpsoy A, Yavuz A, Elpek GO. Artificial intelligence in pathological evaluation of gastrointestinal cancers. Artif Intell Gastroenterol 2021; 2(6): 141-156
- URL: https://www.wjgnet.com/2644-3236/full/v2/i6/141.htm
- DOI: https://dx.doi.org/10.35712/aig.v2.i6.141