Review
Copyright ©The Author(s) 2021.
Artif Intell Gastroenterol. Dec 28, 2021; 2(6): 141-156
Published online Dec 28, 2021. doi: 10.35712/aig.v2.i6.141
Table 3 Artificial intelligence-based applications in colorectal cancer
Ref.
Task
No. of cases/data set
Method
Performance
Xu et al[96]Classification717 patches (N, ADC subtypes)AlexNet Accuracy (97.5%)
Awan et al[97]454 cases (N, ADC grades LG vs HG)NN Accuracy (97%, for 2-class; 91%, for 3-class)
Haj-Hassan et al[98]30 multispectral image patches (N, AD, ADC)CNN Accuracy (99.2%)
Kainz et al[99]165 images (benign vs malignant)CNN (LeNet-5)Accuracy (95%-98%)
Korbar et al[34]697 cases (N, AD subtypes)ResNet Accuracy (93.0%)
Yoshida et al[100]1328 colorectal biopsy WSIsML Accuracy (90.1% for adenoma)
Wei et al[35]326 slides (training), 25 slides (validation) 157 slides (internal set)ResNet 157 slides: Accuracy 93.5% vs 91.4%(pathologists) 238 slides: Accuracy 87.0% vs 86.6%(pathologists)
Ponzio et al[101]27 WSIs (13500 patches) (N, AD, ADC)VGG16 Accuracy (96%)
Kather et al[47]94 WSIs1ResNet18AUC (> 0.99)
Yoon et al[102]57 WSIs (10280 patches) VGG Accuracy (93.5%)
Iizuka et al[33]4036 WSIs (N, AD, ADC)CNN/RNN AUCs (0.96, ADC; 0.99, AD)
Sena et al[103]393 WSIs (12565 patches) (N, HP, AD, ADC)CNN Accuracy (80%)
Bychkov et al[45]Prognosis420 cases RNNHR of 2.3, AUC (0.69)
Kather et al[46]1296 WSIs VGG19 Accuracy (94%-99%)
Kather et al[46]934 cases DL (comp. 5 networks)HR for overall survival of 1.63-1.99
Geessink et al[104]129 cases NN HR of 2.04 for disease free survival
Skrede et al [105]2022 casesNeural networks with MILHR 3.04
Kather et al[47]Genetic alterationsTCGA-DX (93408 patches)1TCGA-KR (60894 patches)ResNet18AUC (0.77), TCGA-DXAUC (0.84), TCGA KR)
Echle et al[55]8836 cases (MSI)ShuffleNet DLAUC (0.92-0.96 in two cohorts)
Kather et al[47]Tumor microenvironment analysis86 WSIs (100000)1VGG19 Accuracy (94%-99%)
Shapcott et al[48]853 patches and 142 TCGA imagesCNN with a grid-based attention networkAccuracy (65-84% in two sets)
Swiderska-Chadaj et al[49]28 WSIs FCN/LSM/U-Net Sensitivity (74.0%)
Alom et al[106]21135 patchesDCRN/R2U-NetAccuracy (91.9%)
Sirinukunwattana et al[107]Molecular subtypes1206 cases NN with domain-adversarial learningAUC (0.84-0.95 in the two validation sets)
Weis et al[50]Tumor budding401 casesCNN Correlation R (0.86)