Minireviews
Copyright ©The Author(s) 2021.
Artif Intell Gastroenterol. Apr 28, 2021; 2(2): 56-68
Published online Apr 28, 2021. doi: 10.35712/aig.v2.i2.56
Table 1 Summary of studies assessing computed tomography and magnetic resonance using artificial intelligence-based approach for pancreatic cancer
Ref.
Overall dataset
Testing data
Model
Model performance on testing data
Accuracy (%)
AUC
Sensitivity (%)
Specificity (%)
PPV (%)
NPV (%)
CT
Zhu et al[43], 2019 (United States)439 cases23 casesCNNNANA94.198.5NANA
Liu et al[42], 2019 (China)338 patients100 patientsCNNNA0.9632NANANANA
Chu et al[44], 2019 (China) 380 patients125 patientsML99.2%0.99910098.5NANA
Li et al[75], 2018 (China) 206 patientsNo separate testing data (10-fold CV)CNN72.8%1 NA NA NANANA
Wei et al[37], 2018 (China) 260 patients60 patientsSVMNA0.837 66.7 81.8 NANA
MR
Kaissis et al[49], 2020 (Germany) 207 patients26 patientsMLNA0.938492NANA
Corral et al[50], 2019 (United States) 139 casesNo separate testing data (10-fold CV)DL NA0.78192152%1NANA
Gao et al[51], 2019 (China) 96 patientsNo separate testing data (5-fold CVDL85.1310.91171NANANANA