Copyright
©The Author(s) 2020.
Artif Intell Gastroenterol. Nov 28, 2020; 1(4): 71-85
Published online Nov 28, 2020. doi: 10.35712/aig.v1.i4.71
Published online Nov 28, 2020. doi: 10.35712/aig.v1.i4.71
Ref. | Targets | Sample sizes | Inputs | Tasks | Analysis method | Diagnostic performance |
Yoon et al[28] | GC (ESD/surgery) | 800 cases | GC/non-GC images in close-up and distant views | Detection and invasion depth prediction | CNN | AUC: detection, 0.981; depth, 0.851 |
Zhu et al[29] | GC | 993 images | GC images | Diagnosis of invasion depth | CNN | Sensitivity: 76.4%, PPV: 89.6% |
Li et al[30] | GC and healthy | 386 GC and 1702 NC images | NBI images | Diagnosis of GC | CNN | Sensitivity: 91.1%, PPV: 90.6% |
Hirasawa et al[31] | GC | 13584 training and 2296 test images | GC images | Diagnosis of GC | CNN | Sensitivity: 92.2%, PPV: 30.6% |
Ishioka et al[32] | EGC | 62 cases | Real-time images | Detection | CNN | Detection rate: 94.1% |
Luo et al[33] | GC | 1036496 images | GC images | Detection | CNN | PPV: 0.814, NPV:0.978 |
Horiuchi et al[34] | GC and gastritis | 1492 GC and 1078 gastritis images | NBI images | Detection | CNN | Sensitivity: 95.4%, PPV: 82.3% |
- Citation: Kudou M, Kosuga T, Otsuji E. Artificial intelligence in gastrointestinal cancer: Recent advances and future perspectives. Artif Intell Gastroenterol 2020; 1(4): 71-85
- URL: https://www.wjgnet.com/2644-3236/full/v1/i4/71.htm
- DOI: https://dx.doi.org/10.35712/aig.v1.i4.71