Copyright
©The Author(s) 2022.
Artif Intell Cancer. Apr 28, 2022; 3(2): 27-41
Published online Apr 28, 2022. doi: 10.35713/aic.v3.i2.27
Published online Apr 28, 2022. doi: 10.35713/aic.v3.i2.27
Methods | Nº miRNA | % True classification (95%CI) | Sensitivity | Specificity | AUC |
All miRNA | |||||
Strategy 1 | 56 | 69 (62-75)/69 (62-75) | 0.25/0.43 | 0.93/0.83 | 0.76/0.74 |
CD | 9 | 87 (78-93)/86 (77-92) | 0.70/0.73 | 0.96/0.93 | 0.89/0.92 |
UC | 30 | 72% (63-80)/76 (67-83) | 0.45/0.55 | 0.86/0.87 | 0.77/0.81 |
miRNAs selected by sPLS-DA | |||||
Strategy 1 | 11 | 69 (62-75)/68 (62-75) | 0.36/0.36 | 0.87/0.86 | 0.72/0.74 |
CD | 5 | 80 (70-88)/82 (67-86) | 0.67/0.60 | 0.87/0.87 | 0.84/0.86 |
UC | 8 | 73 (64-80)/81 (73-88) | 0.48/0.57 | 0.86/0.93 | 0.73/0.81 |
- Citation: Abaach M, Morilla I. Learning models for colorectal cancer signature reconstruction and classification in patients with chronic inflammatory bowel disease. Artif Intell Cancer 2022; 3(2): 27-41
- URL: https://www.wjgnet.com/2644-3228/full/v3/i2/27.htm
- DOI: https://dx.doi.org/10.35713/aic.v3.i2.27