Basic Study
Copyright ©The Author(s) 2022.
Artif Intell Cancer. Apr 28, 2022; 3(2): 27-41
Published online Apr 28, 2022. doi: 10.35713/aic.v3.i2.27
Table 2 Summary of patients’ classification predicted by random forests/support vector machines respectively. From left to right: Group of patients, amount of selected miRNA, percentage of success in true positive classification, sensitivity, specificity and their area under the curve
Methods
Nº miRNA
% True classification (95%CI)
Sensitivity
Specificity
AUC
All miRNA
Strategy 15669 (62-75)/69 (62-75) 0.25/0.43 0.93/0.83 0.76/0.74
CD987 (78-93)/86 (77-92) 0.70/0.73 0.96/0.930.89/0.92
UC3072% (63-80)/76 (67-83) 0.45/0.55 0.86/0.870.77/0.81
miRNAs selected by sPLS-DA
Strategy 11169 (62-75)/68 (62-75) 0.36/0.360.87/0.860.72/0.74
CD580 (70-88)/82 (67-86) 0.67/0.600.87/0.870.84/0.86
UC873 (64-80)/81 (73-88) 0.48/0.570.86/0.930.73/0.81