Copyright
©The Author(s) 2021.
Artif Intell Cancer. Apr 28, 2021; 2(2): 12-24
Published online Apr 28, 2021. doi: 10.35713/aic.v2.i2.12
Published online Apr 28, 2021. doi: 10.35713/aic.v2.i2.12
Publish date | Ref. | AI | Application scenarios | Sensitivity | Accuracy | Specificity | PPV | NPV | Detection time | Variation | Volume | AUC | DSC |
10/2020 | Fukuda et al[16] | CNN | Diagnosis of esophagus squamous cell cancer | 91.1% | 88.3% | ||||||||
05/2020 | Zhang et al[7] | CNN | Diagnosis of chronic atrophic gastritis | 94.5% | 94.2% | 94.0% | 0.99 | ||||||
10/2020 | Horiuchi et al[19] | CAD | Diagnosis of early gastric cancer | 87.4% | 85.1% | 82.8% | 83.5% | 86.7% | 0.8684 | ||||
02/2020 | Wang et al[23] | Faster R-CNN | Circumferential resection margin of rectal cancer | 83.8% | 93.2% | 95.6% | |||||||
03/2020 | Shen et al[28] | RF | Pathological complete response of rectal cancer | 95.3% | |||||||||
01/2021 | Abe et al[18] | CNN | Diagnosis of gastric cancer | 58.4% | 87.3% | 26.0% | 45.5 s | ||||||
01/2020 | Zhou et al[29] | CNN | Lymph node metastasis prediction from primary breast cancer | > 80% | > 70% | 0.9 | |||||||
03/2020 | Penco et al[32] | DWI | MRI-guided vacuum-assisted breast biopsy | 84.0% | 94.0% | 77.0% | 97.0% | ||||||
05/2020 | Adachi et al[31] | RetinaNet | Diagnosis of breast cancer | 92.6% | 82.8% | 0.925 | |||||||
Readers without RetinaNet | 84.7% | 84.1% | 0.884 | ||||||||||
Readers with RetinaNet | 88.9% | 82.3% | 0.899 | ||||||||||
02/2020 | Sasaki et al[35] | Experts | Diagnosis of breast cancer | 89.0% | |||||||||
Experts with Transpara system | 95.0% | ||||||||||||
06/2020 | Mango et al[30] | US | Diagnosis of BI-RADS 3 to BI-RADS 4A or above of breast cancer | 13.6% | |||||||||
US+DS | 10.8% | ||||||||||||
02/2020 | Barczyński et al[39] | Doctors without CAD | Classification of thyroid tumor | 76.0% | |||||||||
Doctors with CAD | 82.0% | ||||||||||||
06/2020 | Lee et al[41] | CAD | Diagnosis of thyroid neck lymph node metastasis | 80.2% | 82.8% | 83.0% | 83.0% | 80.2% | 0.884 | ||||
03/2020 | Polymeri et al[50] | CNN | Prostate gland uptake in PET/CT | 71 mL | |||||||||
10/2020 | Raciti et al[43] | Paige Prostate Alpha | Diagnosis of prostate cancer | 90.0% | |||||||||
07/2020 | Chauvie et al[51] | Binomial visual analysis | Lung DTS | 95.0% | 14.0% | ||||||||
Pulmonary-RADS | 65.0% | 19.0% | |||||||||||
Logistic regression | 20.0% | 29.0% | |||||||||||
RF | 30.0% | 40.0% | |||||||||||
Neural network | 90.0% | 95.0% | |||||||||||
07/2020 | Tau et al[52] | CNN | Diagnosis of lymph node metastasis of lung cancer | 74% ± 32% | 80% ± 17% | 84% ± 16% | |||||||
Predicting of distal metastasis of lung cancer | 45% ± 8% | 63% ± 5% | 79% ± 6% | 54.5% | 68.6% | ||||||||
01/2020 | Peng et al[54] | Transfer learning | Predicting of TACE treatment response of hepatocellular carcinoma | > 82.8% | > 0.94 | ||||||||
09/2013 | Wolz et al[59] | Multi atlas technology | Segmentation of the pancreas | 70.0% | |||||||||
08/2020 | Gibson et al[62] | Deep learning technology | 78.0% | ||||||||||
iFCN | 72.3% ± 11.4% | ||||||||||||
Artificial segmentation | 15 min to 87.5% DSC |
- Citation: Shao Y, Zhang YX, Chen HH, Lu SS, Zhang SC, Zhang JX. Advances in the application of artificial intelligence in solid tumor imaging. Artif Intell Cancer 2021; 2(2): 12-24
- URL: https://www.wjgnet.com/2644-3228/full/v2/i2/12.htm
- DOI: https://dx.doi.org/10.35713/aic.v2.i2.12