Copyright
©The Author(s) 2021.
World J Clin Cases. Dec 26, 2021; 9(36): 11255-11264
Published online Dec 26, 2021. doi: 10.12998/wjcc.v9.i36.11255
Published online Dec 26, 2021. doi: 10.12998/wjcc.v9.i36.11255
Figure 3 Areas under the receiver operating characteristic curve.
LR: Logistic regression; SVM: Support vector machine; RF: Random forest; XGboost: Extreme gradient boosting; DT: Decision tree; AUC: Area under the curve.
- Citation: Dong JF, Xue Q, Chen T, Zhao YY, Fu H, Guo WY, Ji JS. Machine learning approach to predict acute kidney injury after liver surgery. World J Clin Cases 2021; 9(36): 11255-11264
- URL: https://www.wjgnet.com/2307-8960/full/v9/i36/11255.htm
- DOI: https://dx.doi.org/10.12998/wjcc.v9.i36.11255