Copyright
©The Author(s) 2019.
World J Clin Cases. Jul 6, 2019; 7(13): 1611-1622
Published online Jul 6, 2019. doi: 10.12998/wjcc.v7.i13.1611
Published online Jul 6, 2019. doi: 10.12998/wjcc.v7.i13.1611
mean ± SD | P value, vs G1 | P value, vs G2 | P value of binary | |
Gender (male / female) | s | 0.3575 | ||
G1 | 14 / 18 | |||
G2 | 37 / 11 | 0.002 | ||
G3 | 4 / 7 | 0.668 | 0.008 | |
Age | < 0.001 | |||
G1 | 52.47 ± 11.70 | |||
G2 | 49.19 ± 11.34 | 0.634 | ||
G3 | 50.00 ± 17.04 | 0.082 | 0.039 | |
ALT | < 0.001 | |||
G1 | 34.95 ± 72.06 | |||
G2 | 33.97 ± 59.10 | 0.730 | ||
G3 | 117.02 ± 143.74 | 0.039 | 0.006 | |
BIL | < 0.001 | |||
G1 | 9.15 ± 3.65 | |||
G2 | 12.71 ± 9.56 | 0.009 | ||
G3 | 69.63 ± 67.56 | < 0.001 | < 0.001 | |
AFP | < 0.001 | |||
G1 | 2.27 ± 1.02 | |||
G2 | 3.34 ± 2.38 | 0.014 | ||
G3 | 3.47 ± 1.50 | 0.035 | 0.606 | |
CEA | < 0.001 | |||
G1 | 1.51 ± 0.82 | |||
G2 | 2.19 ± 2.38 | 0.132 | ||
G3 | 11.77 ± 17.05 | < 0.001 | < 0.001 | |
CA19-9 | < 0.001 | |||
G1 | 9.58 ± 7.57 | |||
G2 | 20.46 ± 24.74 | 0.007 | ||
G3 | 37.10 ± 39.40 | < 0.001 | 0.118 | |
CA125 | 0.0146 | |||
G1 | 10.43 ± 5.60 | |||
G2 | 13.72 ± 12.22 | 0.039 | ||
G3 | 11.13 ± 4.75 | 0.942 | 0.195 | |
CA15-3 | < 0.001 | |||
G1 | 8.98 ± 4.34 | |||
G2 | 11.41 ± 5.49 | 0.361 | ||
G3 | 11.52 ± 3.80 | 0.585 | 0.318 | |
CA72-4 | < 0.001 | |||
G1 | 1.83 ± 1.43 | |||
G2 | 2.14 ± 1.50 | 0.217 | ||
G3 | 7.42 ± 7.85 | < 0.001 | < 0.001 |
- Citation: Zhou RQ, Ji HC, Liu Q, Zhu CY, Liu R. Leveraging machine learning techniques for predicting pancreatic neuroendocrine tumor grades using biochemical and tumor markers. World J Clin Cases 2019; 7(13): 1611-1622
- URL: https://www.wjgnet.com/2307-8960/full/v7/i13/1611.htm
- DOI: https://dx.doi.org/10.12998/wjcc.v7.i13.1611