Copyright
©The Author(s) 2024.
World J Clin Cases. Sep 16, 2024; 12(26): 5908-5921
Published online Sep 16, 2024. doi: 10.12998/wjcc.v12.i26.5908
Published online Sep 16, 2024. doi: 10.12998/wjcc.v12.i26.5908
Table 4 Outcomes of radiomics models in validation set
Algorithms | AUC (95%CI) | Accuracy | Sensitivity | Specificity |
LR | 0.794 (0.706-0.976) | 0.794 | 0.765 | 0.824 |
KNN | 0.893 (0.766-0.971) | 0.765 | 0.823 | 0.705 |
DT | 0.676 (0.529-0.824) | 0.676 | 0.529 | 0.824 |
RF | 0.915 (0.806-0.986) | 0.824 | 0.824 | 0.824 |
GB | 0.907 (0.792-0.979) | 0.794 | 0.706 | 0.882 |
XGBoost | 0.869 (0.739-0.965) | 0.765 | 0.706 | 0.824 |
GBDT | 0.872 (0.742-0.958) | 0.765 | 0.647 | 0.882 |
- Citation: Wei ZY, Zhang Z, Zhao DL, Zhao WM, Meng YG. Magnetic resonance imaging-based radiomics model for preoperative assessment of risk stratification in endometrial cancer. World J Clin Cases 2024; 12(26): 5908-5921
- URL: https://www.wjgnet.com/2307-8960/full/v12/i26/5908.htm
- DOI: https://dx.doi.org/10.12998/wjcc.v12.i26.5908