Copyright
©The Author(s) 2024.
World J Clin Cases. Aug 26, 2024; 12(24): 5568-5582
Published online Aug 26, 2024. doi: 10.12998/wjcc.v12.i24.5568
Published online Aug 26, 2024. doi: 10.12998/wjcc.v12.i24.5568
Table 6 Results of predicting EZH2 in the training set and validation set based on the logistic and random forest classifier algorithm
Classification model | AUC | Accuracy | Sensitivity | Specificity | F1 score | |
Validation | Logistic | 0.792 | 0.667 | 0.800 | 0.833 | 0.833 |
Random Forest | 0.812 | 0.750 | 1.000 | 0.750 | 0.833 | |
Training | Logistic | 0.787 | 0.750 | 0.679 | 0.881 | 0.744 |
Random Forest | 1.000 | 0.938 | 1.000 | 1.000 | 1.000 |
- Citation: Yu TY, Zhan ZJ, Lin Q, Huang ZH. Computed tomography-based radiomics predicts the fibroblast-related gene EZH2 expression level and survival of hepatocellular carcinoma. World J Clin Cases 2024; 12(24): 5568-5582
- URL: https://www.wjgnet.com/2307-8960/full/v12/i24/5568.htm
- DOI: https://dx.doi.org/10.12998/wjcc.v12.i24.5568