Copyright
©The Author(s) 2024.
World J Clin Cases. May 26, 2024; 12(15): 2506-2521
Published online May 26, 2024. doi: 10.12998/wjcc.v12.i15.2506
Published online May 26, 2024. doi: 10.12998/wjcc.v12.i15.2506
Table 2 Comparison with SMAPE, RAE, RRSE, and RMSE between multiple linear regression and machine learning methods
NAFLD+ group with age | MAPE | SMAPE | RAE | RRSE | RMSE |
Linear | 0.139 | 0.132 | 0.845 | 0.842 | 13.959 |
SGB | 0.138 | 0.131 | 0.841 | 0.834 | 13.825 |
XGBoost | 0.139 | 0.132 | 0.845 | 0.842 | 13.946 |
Elasticnet | 0.139 | 0.132 | 0.845 | 0.842 | 13.954 |
NAFLD- group with age | |||||
Linear | 0.133 | 0.128 | 0.868 | 0.862 | 14.671 |
SGB | 0.132 | 0.126 | 0.855 | 0.857 | 14.59 |
XGboost | 0.132 | 0.126 | 0.853 | 0.857 | 14.58 |
Elasticnet | 0.134 | 0.128 | 0.868 | 0.862 | 14.673 |
NAFLD+ group without age | |||||
Linear | 0.154 | 0.14 | 0.872 | 0.897 | 15.606 |
SGB | 0.153 | 0.139 | 0.865 | 0.888 | 15.444 |
XGboost | 0.153 | 0.14 | 0.869 | 0.891 | 15.49 |
Elasticnet | 0.154 | 0.14 | 0.872 | 0.897 | 15.596 |
NAFLD- group without age | |||||
Linear | 0.134 | 0.13 | 0.905 | 0.906 | 15.149 |
SGB | 0.133 | 0.129 | 0.895 | 0.892 | 14.915 |
XGboost | 0.133 | 0.129 | 0.895 | 0.893 | 14.916 |
Elasticnet | 0.134 | 0.13 | 0.904 | 0.905 | 15.119 |
- Citation: Chen IC, Chou LJ, Huang SC, Chu TW, Lee SS. Machine learning-based comparison of factors influencing estimated glomerular filtration rate in Chinese women with or without non-alcoholic fatty liver. World J Clin Cases 2024; 12(15): 2506-2521
- URL: https://www.wjgnet.com/2307-8960/full/v12/i15/2506.htm
- DOI: https://dx.doi.org/10.12998/wjcc.v12.i15.2506