Copyright
©The Author(s) 2023.
World J Clin Cases. Nov 26, 2023; 11(33): 7951-7964
Published online Nov 26, 2023. doi: 10.12998/wjcc.v11.i33.7951
Published online Nov 26, 2023. doi: 10.12998/wjcc.v11.i33.7951
Table 4 The average performance of the LR, random forest, stellate ganglion block, classification and regression tree, and eXtreme gradient boosting methods
Accuracy | Sensitivity | Specificity | AUC | |
LGR | 0.685 ± 0.072 | 0.687 ± 0.152 | 0.683 ± 0.114 | 0.703 ± 0.057 |
CART | 0.541 ± 0.074 | 0.546 ± 0.078 | 0.529 ± 0.670 | 0.540 ± 0.070 |
RF | 0.707 ± 0.047 | 0.711 ± 0.100 | 0.678 ± 0.099 | 0.707 ± 0.037 |
XGBoost | 0.712 ± 0.072 | 0.727 ± 0.139 | 0.674 ± 0.088 | 0.719 ± 0.062 |
NB | 0.692 ± 0.059 | 0.702 ± 0.116 | 0.669 ± 0.090 | 0.704 ± 0.056 |
- Citation: Yang CC, Peng CH, Huang LY, Chen FY, Kuo CH, Wu CZ, Hsia TL, Lin CY. Comparison between multiple logistic regression and machine learning methods in prediction of abnormal thallium scans in type 2 diabetes. World J Clin Cases 2023; 11(33): 7951-7964
- URL: https://www.wjgnet.com/2307-8960/full/v11/i33/7951.htm
- DOI: https://dx.doi.org/10.12998/wjcc.v11.i33.7951