Copyright
©The Author(s) 2023.
World J Clin Cases. Nov 26, 2023; 11(33): 7951-7964
Published online Nov 26, 2023. doi: 10.12998/wjcc.v11.i33.7951
Published online Nov 26, 2023. doi: 10.12998/wjcc.v11.i33.7951
Variables | mean ± SD | N |
Age | 67.38 ± 9.69 | 556 |
Body mass index | 26.16 ± 3.9 | 556 |
Duration of diabetes | 13.69 ± 7.94 | 556 |
Systolic blood pressure | 131.14 ± 15.42 | 493 |
Diastolic blood pressure | 73.32 ± 10.15 | 493 |
Hemoglobin | 12.92 ± 1.68 | 444 |
Triglyceride | 153.74 ± 45.85 | 539 |
Glycated hemoglobin | 7.79 ± 1.36 | 538 |
High density lipoprotein cholesterol | 122.65 ± 74.34 | 535 |
Low density lipoprotein cholesterol | 49.65 ± 14.75 | 498 |
Alanine aminotransferase | 23.87 ± 13.94 | 537 |
Creatinine | 1.16 ± 1 | 536 |
Microalbumin creatinine ratio | 194.18 ± 733.73 | 526 |
Homeostasis assessment-insulin resistance | 0.63 ± 0.34 | 366 |
Homeostasis assessment-insulin secretion | 1.71 ± 0.37 | 366 |
- Citation: Yang CC, Peng CH, Huang LY, Chen FY, Kuo CH, Wu CZ, Hsia TL, Lin CY. Comparison between multiple logistic regression and machine learning methods in prediction of abnormal thallium scans in type 2 diabetes. World J Clin Cases 2023; 11(33): 7951-7964
- URL: https://www.wjgnet.com/2307-8960/full/v11/i33/7951.htm
- DOI: https://dx.doi.org/10.12998/wjcc.v11.i33.7951