Copyright
©The Author(s) 2023.
World J Clin Cases. Nov 6, 2023; 11(31): 7530-7542
Published online Nov 6, 2023. doi: 10.12998/wjcc.v11.i31.7530
Published online Nov 6, 2023. doi: 10.12998/wjcc.v11.i31.7530
Resistance mechanism | Molecule/process involved | Resistance to antibiotic | Primary host | Genome-encoded | Plasmid-encoded |
Decrease in bacterial wall permeability | Reduced porin expression | Different antibiotics | Gram-negative bacteria | oprD gene | No |
Increase in efflux | Tripartite RND pump family | Different antibiotics | Gram-negative bacteria | Yes | Yes |
Antibiotic inactivation by chemical group transfer | Modification | Aminoglycosides | Gram-negative and Gram-positive bacteria | Yes | Yes |
Oxidation | Tetracyclines | Many bacteria | Tet(X) genes | Yes | |
Antibiotic hydrolysis | AmpC beta-lactamases | Broad-spectrum beta-lactams | Gram-negative bacteria: Enterobacteriaceae | Yes | Yes |
Carbapenemases | A variety of beta-lactams | Enterobacteriaceae | Yes | Yes | |
Modification of antibiotic target | Modification of peptidoglycan precursors | Glycopeptides: vancomycin | Gram-positive cocci: Enterococcaceae | vanC, vanD operons | vanA gene claster |
Alteration of LPS | Polymyxins: colistin | Gram-negative: Enterobacteriaceae | Yes | Yes | |
Exchange of conventional PBP to PBP2a | Beta-lactams | Staphylococcaceae | mecA gene | Yes |
- Citation: Liakina V. Antibiotic resistance in patients with liver cirrhosis: Prevalence and current approach to tackle. World J Clin Cases 2023; 11(31): 7530-7542
- URL: https://www.wjgnet.com/2307-8960/full/v11/i31/7530.htm
- DOI: https://dx.doi.org/10.12998/wjcc.v11.i31.7530