Minireviews
Copyright ©The Author(s) 2023.
World J Clin Cases. Aug 6, 2023; 11(22): 5193-5203
Published online Aug 6, 2023. doi: 10.12998/wjcc.v11.i22.5193
Figure 3
Figure 3 Schematic representation of construction ofα-Fe2O3@Pt nanosonosensitizers and catalytic oxygen generation-enhanced SDT against cancer. A, G: Schematic diagram of action mechanism of α-Fe2O3@Pt nanoparticles and synthetic method ofα- Fe2O3@Pt; B: The relative cell viability of Fe2O3 and α- Fe2O3@Pt with or without ultrasound under normoxic and hypoxic conditions; C and D: Qualitative and quantitative analysis of ROS by flow cytometer produced by α- Fe2O3@Pt; E: Fluorescence image stained with calcein AM (green, live cells) and PI (Propidium iodide, red, dead cells); F: The flow cytometer apoptosis assay staining with PI and Annexin-FTIC; H: Mechanism diagram of O2 and ROS produced by α- Fe2O3@Pt; I: Flow chart of in vivo study experiment; J-M: The variations of d body weight,relative tumor volume, tumor weight and tumor images of mice from different groups after sacrificing the mice on the 14th day. Citation: Zhang T, Zheng Q, Fu Y, Xie C, Fan G, Wang Y, Wu Y, Cai X, Han G, Li X. α-Fe2O3@Pt heterostructure particles to enable sonodynamic therapy with self-supplied O2 and imaging-guidance. J Nanobiotechnology 2021; 19(1): 358. Copyright © The Author(s) 2021. Published by BioMed Central Ltd. US: Ultrasound; Fe2O3: Ferric oxide; Pt: Platinum; FP:α-Fe2O3@Pt; 1O2: Singlet oxygen; O2: Oxygen; H2O2: Hydrogen peroxide; ROS: Reactive oxygen species.