Copyright
©The Author(s) 2022.
World J Clin Cases. Mar 6, 2022; 10(7): 2115-2126
Published online Mar 6, 2022. doi: 10.12998/wjcc.v10.i7.2115
Published online Mar 6, 2022. doi: 10.12998/wjcc.v10.i7.2115
Variables | Univariate Cox analysis | Multivariate Cox analysis | ||
HR (95%CI) | P value | HR (95%CI) | P value | |
Age | 1.1 (1.1-1.2) | 3.3e-06 | 1.180 (1.093730-1.274) | 2.04e-05 |
Surgical type | 1 (0.66-1.6) | 0.93 | 2.244 (1.164409-4.325) | 0.0157 |
FIGO stage | 3.3e-08 (0-Inf) | 1 | 1.046e-08 (0-Inf) | 0.9990 |
Tumor size | 1.6 (0.21-12) | 0.65 | 8.503 (0.006883-10503.344) | 0.5557 |
CA125 | 1.7 (0.45-6.4) | 0.44 | 1.046 (0.203595-5.370) | 0.9574 |
CA199 | 1.2 (0.49-3.1) | 0.66 | 2.156 (0.531390-8.746) | 0.2823 |
BMI | 1.1 (0.88-1.4) | 0.4 | ||
Menopausal status | 1.9 (0.42-8.4) | 0.41 | ||
Parity | 0.31 (0.056-1.7) | 0.19 | ||
Adjuvant therapy | 0.69 (0.14-3.4) | 0.65 |
- Citation: Gong XQ, Zhang Y. Develop a nomogram to predict overall survival of patients with borderline ovarian tumors. World J Clin Cases 2022; 10(7): 2115-2126
- URL: https://www.wjgnet.com/2307-8960/full/v10/i7/2115.htm
- DOI: https://dx.doi.org/10.12998/wjcc.v10.i7.2115