Copyright
©The Author(s) 2025.
World J Methodol. Sep 20, 2025; 15(3): 101837
Published online Sep 20, 2025. doi: 10.5662/wjm.v15.i3.101837
Published online Sep 20, 2025. doi: 10.5662/wjm.v15.i3.101837
Table 4 Performance of supervised models to estimate the risk of mortality in patients with dengue shock syndrome from oversampling data with the synthetic minority oversampling technique
Models | AUC (95%CI) | Sensitivity | Specificity | Precision | F1 score | Accuracy |
Logistic regression | 0.93 (0.89-0.97) | 0.94 | 0.93 | 0.77 | 0.85 | 0.93 |
Naïve Bayes | 0.94 (0.91-0.97) | 0.95 | 0.94 | 0.80 | 0.87 | 0.94 |
Random forest | 0.97 (0.95-0.99) | 0.98 | 0.97 | 0.88 | 0.93 | 0.97 |
KNN | 0.91 (0.87-0.95) | 0.92 | 0.89 | 0.69 | 0.78 | 0.90 |
Decision tree | 0.95 (0.92-0.98) | 0.95 | 0.96 | 0.85 | 0.90 | 0.96 |
XGBoost | 0.97 (0.95-0.99) | 0.98 | 0.96 | 0.86 | 0.92 | 0.96 |
- Citation: Vo LT, Vu T, Pham TN, Trinh TH, Nguyen TT. Machine learning-based models for prediction of in-hospital mortality in patients with dengue shock syndrome. World J Methodol 2025; 15(3): 101837
- URL: https://www.wjgnet.com/2222-0682/full/v15/i3/101837.htm
- DOI: https://dx.doi.org/10.5662/wjm.v15.i3.101837