Copyright
©The Author(s) 2025.
World J Methodol. Sep 20, 2025; 15(3): 101837
Published online Sep 20, 2025. doi: 10.5662/wjm.v15.i3.101837
Published online Sep 20, 2025. doi: 10.5662/wjm.v15.i3.101837
Table 3 Performance of supervised models to estimate the risk of mortality in patients with dengue shock syndrome without the synthetic minority oversampling technique
Models | AUC (95%CI) | Sensitivity | Specificity | Precision | F1 score | Accuracy |
Logistic regression | 0.92 (0.90-0.94) | 0.99 | 0.50 | 0.98 | 0.61 | 0.97 |
Naïve Bayes | 0.86 (0.70-1) | 0.91 | 0.82 | 0.83 | 0.87 | 0.86 |
Random forest | 0.86 (0.69-1) | 0.82 | 0.91 | 0.90 | 0.86 | 0.86 |
KNN | 0.86 (0.71-1) | 0.82 | 0.91 | 0.90 | 0.86 | 0.86 |
Decision tree | 0.77 (0.59-0.94) | 0.82 | 0.73 | 0.75 | 0.78 | 0.77 |
XGBoost | 0.86 (0.71-1) | 0.82 | 0.91 | 0.90 | 0.86 | 0.86 |
- Citation: Vo LT, Vu T, Pham TN, Trinh TH, Nguyen TT. Machine learning-based models for prediction of in-hospital mortality in patients with dengue shock syndrome. World J Methodol 2025; 15(3): 101837
- URL: https://www.wjgnet.com/2222-0682/full/v15/i3/101837.htm
- DOI: https://dx.doi.org/10.5662/wjm.v15.i3.101837