Copyright
©The Author(s) 2017.
World J Transplant. Jun 24, 2017; 7(3): 193-202
Published online Jun 24, 2017. doi: 10.5500/wjt.v7.i3.193
Published online Jun 24, 2017. doi: 10.5500/wjt.v7.i3.193
Figure 5 Viability of MG-63 osteoblasts on the titanium-copper-nitride surfaces.
Two different experimental arrangements were used: (A) the MG-63 cells were directly cultivated on the TiCuN surfaces for 24 h and (B) the samples were pre-incubated in DMEM for 24 h and after this the cells were seeded onto the surfaces for another 24 h. Cell viability was significantly reduced after direct seeding on TiCuN. Cell viability was higher on TiCuN + BONIT® compared to TiCuN. Pre-incubation of the samples in DMEM for 24 h before seeding elevated cell viability on both samples (n = 3, mean value ± SD, t-test, dP < 0.001). TPS: Titanium plasma spray; TiCuN: Titanium-copper-nitride; DMEM: Dulbecco’s modified Eagle medium.
- Citation: Bergemann C, Zaatreh S, Wegner K, Arndt K, Podbielski A, Bader R, Prinz C, Lembke U, Nebe JB. Copper as an alternative antimicrobial coating for implants - An in vitro study. World J Transplant 2017; 7(3): 193-202
- URL: https://www.wjgnet.com/2220-3230/full/v7/i3/193.htm
- DOI: https://dx.doi.org/10.5500/wjt.v7.i3.193