Copyright
©The Author(s) 2020.
World J Cardiol. Jan 26, 2020; 12(1): 7-25
Published online Jan 26, 2020. doi: 10.4330/wjc.v12.i1.7
Published online Jan 26, 2020. doi: 10.4330/wjc.v12.i1.7
1. The ratio of the mitral blood flow velocity into the LV in early diastole (the E wave) to peak blood flow velocity in late diastole caused by atrial contraction (the A wave), or the E/A ratio, ≥ 2. The normal E/A is approximately 0.8. However, tachycardia, atrioventricular block, and left bundle branch block can lead to fusion of E and A waves, and ambiguity in diastolic function assessment. |
2. Increased left atrial pressure measured by early mitral blood flow velocity across the mitral valve (E wave) to the early diastolic velocity (e’) of the lateral mitral annulus, or E/e’ ratio. An E/e’ ratio 10 = mild and E/e’ ratio > 14 = significant LV dysfunction. If the lateral mitral annulus e' velocity is not quantifiable, the septal mitral annular e' velocity can be used. In this case, the E/e’ is increased if the ratio is > 15. |
3. Lateral mitral annular e’ velocity < 10 cm/s or septal e’ mitral annular velocity < 7 cm/s. |
4. Pulmonary artery systolic pressure > 35 mmHg indicative of pulmonary arterial hypertension. Pulmonary artery systolic pressure = 4 × (peak tricuspid regurgitation velocity)2 + estimated right atrial pressure. These criteria should not be used in patients with significant pulmonary disease. |
5. An echocardiographic determination of global longitudinal strain of -16.05 ± 2.16. This measurement can separate patients with HFpEF from patients with hypertension and normal controls in whom the global longitudinal strain measurements are -18.58 ± 2.84 and -19.59 ± 1.49, respectively. |
- Citation: Henning RJ. Diagnosis and treatment of heart failure with preserved left ventricular ejection fraction. World J Cardiol 2020; 12(1): 7-25
- URL: https://www.wjgnet.com/1949-8462/full/v12/i1/7.htm
- DOI: https://dx.doi.org/10.4330/wjc.v12.i1.7