Copyright
©The Author(s) 2025.
World J Gastrointest Surg. Apr 27, 2025; 17(4): 103696
Published online Apr 27, 2025. doi: 10.4240/wjgs.v17.i4.103696
Published online Apr 27, 2025. doi: 10.4240/wjgs.v17.i4.103696
Table 4 Model prediction efficiency
Model | AUC (95%CI) | Accuracy | Sensitivity | Specificity | Recall | Precision |
Nomogram | 0.908 (0.824-0.992) | 0.899 | 0.962 | 0.688 | 0.962 | 0.911 |
Decision-tree | 0.874 (0.785-0.963) | 0.855 | 0.849 | 0.875 | 0.849 | 0.957 |
Random-forest | 0.928 (0.869-0.987) | 0.841 | 0.906 | 0.625 | 0.906 | 0.889 |
Gradient-boosting tree | 0.907 (0.837-0.976) | 0.870 | 0.906 | 0.750 | 0.906 | 0.923 |
Support vector machine | 0.983a,2,4 (0.959-1.000) | 0.884 | 0.925 | 0.750 | 0.925 | 0.925 |
Naive Bayes | 0.807a,1,3,4,5 (0.702-0.911) | 0.797 | 0.811 | 0.750 | 0.811 | 0.915 |
- Citation: Yuan JH, Jin YM, Xiang JY, Li SS, Zhong YX, Zhang SL, Zhao B. Machine learning-based prediction of postoperative mortality risk after abdominal surgery. World J Gastrointest Surg 2025; 17(4): 103696
- URL: https://www.wjgnet.com/1948-9366/full/v17/i4/103696.htm
- DOI: https://dx.doi.org/10.4240/wjgs.v17.i4.103696