Copyright
©The Author(s) 2025.
World J Gastrointest Surg. Apr 27, 2025; 17(4): 103696
Published online Apr 27, 2025. doi: 10.4240/wjgs.v17.i4.103696
Published online Apr 27, 2025. doi: 10.4240/wjgs.v17.i4.103696
Table 2 Multivariate logistic regression analysis of postoperative death in patients undergoing abdominal surgery
Index | B | SE | Wald | P value | OR | 95%CI |
Age | -0.609 | 0.146 | 17.291 | < 0.001 | 0.544 | 0.408-0.725 |
Surgical approach | 0.305 | 0.495 | 0.380 | 0.538 | 1.357 | 0.514-3.582 |
Preoperative complications | -0.172 | 0.605 | 0.081 | 0.776 | 0.842 | 0.257-2.753 |
APTT | 0.533 | 0.108 | 24.360 | < 0.001 | 1.705 | 1.379-2.107 |
AST | 0.172 | 0.062 | 7.681 | 0.006 | 1.188 | 1.052-1.341 |
TBIL | 0.174 | 0.078 | 4.962 | 0.026 | 1.190 | 1.021-1.387 |
ASA classification | 0.119 | 0.300 | 0.158 | 0.691 | 1.127 | 0.626-2.030 |
WBC | 0.183 | 0.074 | 6.154 | 0.013 | 1.201 | 1.039-1.388 |
Constant | 4.880 | 5.475 | 0.794 | 0.373 | 131.566 |
- Citation: Yuan JH, Jin YM, Xiang JY, Li SS, Zhong YX, Zhang SL, Zhao B. Machine learning-based prediction of postoperative mortality risk after abdominal surgery. World J Gastrointest Surg 2025; 17(4): 103696
- URL: https://www.wjgnet.com/1948-9366/full/v17/i4/103696.htm
- DOI: https://dx.doi.org/10.4240/wjgs.v17.i4.103696