Copyright
©The Author(s) 2024.
World J Gastrointest Surg. Jun 27, 2024; 16(6): 1571-1581
Published online Jun 27, 2024. doi: 10.4240/wjgs.v16.i6.1571
Published online Jun 27, 2024. doi: 10.4240/wjgs.v16.i6.1571
Figure 5 Construction of pulmonary infection prediction model via artificial neural network model.
A: The formula of artificial neural network model is as follows: θ = θ-η × ∇ (θ).J (θ). Among them “η” is the learning rate, “so (θ).J (θ)” represents the gradient change of the loss function [i.e., J(θ)]; B: Variable importance using connection weights for the artificial neural network model. IND: Inverse difference; SUV: Sum variance; SUE: Sum entropy; DIV: Difference variance; SOS: Sum of squares; MES: Mean sum.
- Citation: Yang KF, Li SJ, Xu J, Zheng YB. Machine learning prediction model for gray-level co-occurrence matrix features of synchronous liver metastasis in colorectal cancer. World J Gastrointest Surg 2024; 16(6): 1571-1581
- URL: https://www.wjgnet.com/1948-9366/full/v16/i6/1571.htm
- DOI: https://dx.doi.org/10.4240/wjgs.v16.i6.1571