Copyright
©The Author(s) 2024.
World J Gastrointest Surg. Apr 27, 2024; 16(4): 1097-1108
Published online Apr 27, 2024. doi: 10.4240/wjgs.v16.i4.1097
Published online Apr 27, 2024. doi: 10.4240/wjgs.v16.i4.1097
Table 2 The proposed prediction model for 30-d risk of venous thromboembolism in patients undergoing Roux-en-Y gastric bypass
Variables | Regression coefficient | Standard error | t value | P value | 95% confidence interval (lower) | 95% confidence interval (upper) |
Preoperative COPD | 2.54 | 0.49 | 5.15 | 0 | 1.57 | 3.51 |
Length of stay | 0.08 | 0.01 | 6.24 | 0 | 0.06 | 0.11 |
Deep vein thrombosis history | 1.62 | 0.67 | 2.42 | 0.02 | 0.31 | 2.92 |
Hemoglobin A1c level | 1.19 | 0.34 | 3.47 | 0 | 0.52 | 1.86 |
History of venous stasis | 1.44 | 0.53 | 2.7 | 0.01 | 0.4 | 2.48 |
Preoperative anticoagulation use | 1.24 | 0.63 | 1.97 | 0.05 | 0.01 | 2.48 |
Model constant | -5.77 | 0.28 | -20.61 | 0 | -6.32 | -5.22 |
- Citation: Ali H, Inayat F, Moond V, Chaudhry A, Afzal A, Anjum Z, Tahir H, Anwar MS, Dahiya DS, Afzal MS, Nawaz G, Sohail AH, Aziz M. Predicting short-term thromboembolic risk following Roux-en-Y gastric bypass using supervised machine learning. World J Gastrointest Surg 2024; 16(4): 1097-1108
- URL: https://www.wjgnet.com/1948-9366/full/v16/i4/1097.htm
- DOI: https://dx.doi.org/10.4240/wjgs.v16.i4.1097