Basic Study
Copyright ©The Author(s) 2022.
World J Diabetes. Apr 15, 2022; 13(4): 358-375
Published online Apr 15, 2022. doi: 10.4239/wjd.v13.i4.358
Figure 4
Figure 4 X inactive specific transcript can adsorb and bind to miR-15b-5p to reduce miR-15b-5p expression in diabetic nephropathy. A: Fluorescence in situ hybridization assay (scale bar: 25 μm); B: Nuclear/cytosol fractionation assay verified the subcellular localization of X inactive specific transcript (XIST) in HK2 cells; C: Starbase website (starbase.sysu.edu.cn/index.php) predicted the binding sites of XIST and miR-15b-5p; D: Dual-luciferase experiment and E: RNA immunoprecipitation experiment verified the binding relation of XIST and miR-15b-5p; F: qRT-PCR detected miR-15b-5p and pre-miR-15b expression in renal tissue; G: qRT-PCR detected miR-15b-5p and pre-miR-15b expression in HK2 cells. The cell experiment was performed in triplicate. The data were described as mean ± SD and analyzed by one-way ANOVA (F/G) or two-way ANOVA (D/E) and Tukey's multiple comparisons test; aP < 0.05. XIST: X inactive specific transcript; DN: Diabetic nephropathy; DAPI: 4',6-diamidino-2-phenylindole; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; U6: U6 small nuclear RNA; WT: Wild type; MUT: Mutant.