Copyright
©The Author(s) 2022.
World J Diabetes. Feb 15, 2022; 13(2): 85-96
Published online Feb 15, 2022. doi: 10.4239/wjd.v13.i2.85
Published online Feb 15, 2022. doi: 10.4239/wjd.v13.i2.85
Table 1 Characteristics of dipeptidyl peptidase 4 inhibitors
Chemistry | Half-life | HbA1c reduction (%) | Metabolism | Eliminationroute | |
Alogliptin | Modifiedpyrimidinedione | 20 h | 0.6 (mean value) | Minimal | Predominantly (> 70%) renal |
Linagliptin | Xanthine-based | Approxmately 12 h (effective), > 100 h (terminal) | 0.5-0.7 | Minimal | Predominantly biliary (< 6% renal) |
Saxagliptin | Cyanopyrrolidine | 2.5 h (parent), 3 h (metabolite) | 0.5-1.0 | Hydrolysis (cytochrome P450 3A4 or P450 3A5) to form an active metabolite | Metabolism (parent) and renal (metabolite) |
Sitagliptin | β-aminoacid based | 12.5 h | 0.5-1.0 | Minimal | Predominantly (> 80%) |
Vildagliptin | Cyanopyrrolidine | Approxmately 2 h | 0.9 (mean value) | Hydrolysis (cytochrome-independent) to form an inactive metabolite | Metabolism (parent) and renal (metabolite) |
- Citation: Florentin M, Kostapanos MS, Papazafiropoulou AK. Role of dipeptidyl peptidase 4 inhibitors in the new era of antidiabetic treatment. World J Diabetes 2022; 13(2): 85-96
- URL: https://www.wjgnet.com/1948-9358/full/v13/i2/85.htm
- DOI: https://dx.doi.org/10.4239/wjd.v13.i2.85