Review
Copyright ©The Author(s) 2022.
World J Diabetes. Oct 15, 2022; 13(10): 822-834
Published online Oct 15, 2022. doi: 10.4239/wjd.v13.i10.822
Table 3 Summary of studies using artificial intelligence to detect progression in Glaucomatous eyes
Ref.
No. of eyes
Instrument
Approach
Comments
Lin et al[63]80SAPSupervised MLSensitivity-86%; Specificity-88%
Goldbaum et al[64]478 suspects; 150 glaucoma; 55 stable glaucomaSAPUnsupervised MLSpecificity-98.4%, AROC not available; Use of variational Byesian. Independent component analysis mixture model in indentifying patterns of glaucomatous visual field defects and its validation
Wang et al[65]11817 (method developing cohort) and 397 (clinical evaluation cohort)SAPUnsupervised MLAROC of the archetype method 0.77
Yousefi et al[16]939 Abnormal SAP and 1146 normal SAP in the cross section and 270 glaucoma in the longitudinal databaseSAPUnsupervised MLSensitivity 34.5%-63.4% at specificity 87% Comment: it took 3.5 years for ML analysis to detect progression while it took over 3.5 years for other methods to detect progression in 25% of eyes
Belghith et al27- progressing; 26-stable glaucoma and 40 healthy controlsSD OCT Supervised MLSensitivity -78% Specificity in normal eyes-93%; 94% in non-progressive eyes