Review
Copyright ©The Author(s) 2022.
World J Diabetes. Oct 15, 2022; 13(10): 822-834
Published online Oct 15, 2022. doi: 10.4239/wjd.v13.i10.822
Table 1 Comparative analysis of various studies done on artificial intelligence in diabetic retinopathy[19]
Ref.
Sensitivity, specificity or accuracy of the study
Total fundus images examined
Types of AI used
Main objective
Wong et al[20] Area under the curve were 0.97 and 0.92 for microaneurysm and hemorrhages respectively143 imagesA three-layer feed forward neural networkDeals with detecting the microaneurysm and hemorrhages. Frangi filter used
Imani et al[57]Sensitivity of 75.02%-75.24%; Specificity of 97.45%-97.53%60 imagesMCADetected the exudation and blood vessel
Yazid et al[58]97.8% in sensitivity, 99% in specificity and 83.3% in predictivity for STARE database. 90.7% in sensitivity, 99.4% in specificity and 74% in predictivity for the custom database30 imagesInverse surface thresholdingDetected both hard and soft exudates
Akyol et al[59]Percentage accuracy of disc detection ranged from 90%-94.38% using different data set239 imagesKey point detection, texture analysis, and visual dictionary techniquesDetected the optic disc of fundus images
Niemeijer et al[13]Accuracy in 99.9% cases in finding the disc1000 imagesCombined k-nearest neighbor and cuesFast detection of the optic disc
Rajalakshmi et al[60], Smart phone based study 95.8% sensitivity and 80.2% specificity for detecting any DR. 99.1% sensitivity and 80.4% specificity in detecting STDRRetinal images of 296 patientsEye Art AI Dr screening software usedRetinal photography with Remidio ‘Fundus on Phone’
Eye Nuk study Sensitivity was 91.7%; Specificity was 91.5%40542 imagesEye PAC Stelescreening systemRetinal images taken with traditional desktop fundus cameras
Ting et al[61]Sensitivity and specificity for RDR was 90.5% and 91.6%; For STDR the sensitivity was 100% and the specificity was 91.1%494661 retinal imagesDeep learning systemMultiple Retinal images taken with conventional fundus cameras
IRIS Sensitivity of the IRIS algorithm in detecting STDR was 66.4% with false-negative rate of 2% and the specificity was 72.8%. Positive Predictive value of 10.8% and negative predictive value 97.8%15015 patientsIntelligent Retinal Imaging System (IRIS)Retinal screening examination and nonmydriatic fundus photography